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Context
System Virtualization
System virtualization enables several operating systems (Oses) to run
on a physical server. These Oses run in black boxes referred to as
virtual machines (VMs).
The hypervisor is in charge of :

• VM administration

• Block devices

• Network devices

• Scheduling

• Memory management
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Context
System Virtualization - Network
The hypervisor handles incoming and outgoing network packets
to/from VMs. In general, when a packet arrives on a NIC :

• a hardware interrupt is raised and

• caught by the hypervisor.

• The packet is then reconstructed
in the hypervisor memory
(or CVM1 memory)
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Context
System Virtualization - Network

Now, the hypervisor must enable the concerned VM to access the
packet in his memory space.

• Memory copy

• Memory copy(Too costy)

• Memory flipping

Definition

Memory flipping is the process where the hypervisor gives ownership
grants/rights on the pages (storing the packet data) to the concerned
VM. To counterbalance, the VM offers free pages for the CVM.
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Context
System Virtualization - Network - Memory Flipping
• Better throughput than memory copy

• Works well on uniform memory architectures

How about NUMA architectures ?
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Context
System Virtualization - NUMA (Recall)

• Remote memory access is costlier compared a local one.

• Modern Oses updated their memory allocation and scheduling
policies to take into account NUMA.
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Problematic
System Virtualization - Network - NUMA

In a virtualized NUMA environment, the trend is to allocate a whole
node for the CVM. Hence, the CVM’s memory is usually on a different
NUMA node than those of VMs.
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Problematic
System Virtualization - Flipping - NUMA

With this layout, repeated memory flipping operations leads to the
VM’s transparent memory migration from one node to another.

7/16



Problematic
System Virtualization - Flipping - NUMA

To confirm this hypothesis, we ran an E-Commerce benchmark from
the BigDataBench suite (Eight TPC-DS Web Queries).
We monitor VM2’s mem % on each node during the experiment
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Problematic
System Virtualization - Flipping - NUMA
At the end of the experiment, up to 22% ≈ 3,6GB of the VM
memory becomes remote.
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Consequences
Effects of Flipping on NUMA

Is this really a problem ?

Imagine a sprinter preparing for a 200m race.
On the race day, suddenly it is no more 200m but a 2km marathon.
It is clear that he/she will not perform as well as if it was a 200m
race.
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Consequences
Effects of Flipping on NUMA

Analogy to Virtualization
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Consequences
Effects of Flipping on NUMA

Analogy to Virtualization : STREAM before & after flipping
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Our approaches
Dedicated page pool

• Maintain a pool of pages acquired from previous flipping.

• For each flipping operation, pick pages in this pool (if no
available pages, then domalloc)

• These pages can’t be used by other kernel processes.
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Our approaches
Dedicated page pool - Pool size

What about the pool size ?

• Define a static pool size by calibration.

• Dynamic pool size

Algorithm 0 Dynamic poolSize estimation algorithm
1: compute used_poolSize
2: if used_poolSize > 90% then
3: add 10% of poolSize
4: else if used_poolSize < 20% then
5: remove 10% of poolSize
6: end if
7: set new poolSize value
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Our approches
Asynchronous memory migration

Asynchronously migrate all pages which became remote due to
memory flipping.
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Our approches
Asynchronous memory migration

But, when should we migrate ?

• Periodically
We define a period and for each corresponding epoch, migrate
all pages which became remote.

• Based on a threshold value
We define a threshold value which corresponds to the
maximum remote memory authorized. Once this threshold is
reached, the asynchronous migration is triggered.
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Evaluations
Does our solutions mitigate the issue ?

We implemented our solutions in the Xen hypervisor 4.9.0 and
introduced modest changes in the Linux Kernel 4.14.2.
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Conclusion

Thank you for your attention!!!
Feel free to ask any question.
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