
Memory Flipping: A threat to NUMA
virtual machines in the Cloud

Djob Mvondo, LIG, University of Grenoble Alpes
Boris Teabe, IRIT, University of Toulouse
Alain Tchana, I3S, University of Nice
Daniel Hagimont, IRIT, University of Toulouse,
Noel De Palma, LIG, University of Grenoble Alpes



Context
System Virtualization
System virtualization enables several operating systems (Oses) to run
on a physical server. These Oses run in black boxes referred to as
virtual machines (VMs).
The hypervisor is in charge of :

• VM administration

• Block devices

• Network devices

• Scheduling

• Memory management

1/16



Context
System Virtualization - Network
The hypervisor handles incoming and outgoing network packets
to/from VMs. In general, when a packet arrives on a NIC :

• a hardware interrupt is raised and

• caught by the hypervisor.

• The packet is then reconstructed
in the hypervisor memory
(or CVM1 memory)

2/16



Context
System Virtualization - Network
The hypervisor handles incoming and outgoing network packets
to/from VMs. In general, when a packet arrives on a NIC :

• a hardware interrupt is raised and

• caught by the hypervisor.

• The packet is then reconstructed
in the hypervisor memory
(or CVM1 memory)

2/16



Context
System Virtualization - Network

Now, the hypervisor must enable the concerned VM to access the
packet in his memory space.

• Memory copy

• Memory copy(Too costy)

• Memory flipping

Definition

Memory flipping is the process where the hypervisor gives ownership
grants/rights on the pages (storing the packet data) to the concerned
VM. To counterbalance, the VM offers free pages for the CVM.

3/16



Context
System Virtualization - Network

Now, the hypervisor must enable the concerned VM to access the
packet in his memory space.

• Memory copy

• Memory copy(Too costy)

• Memory flipping

Definition

Memory flipping is the process where the hypervisor gives ownership
grants/rights on the pages (storing the packet data) to the concerned
VM. To counterbalance, the VM offers free pages for the CVM.

3/16



Context
System Virtualization - Network - Memory Flipping
• Better throughput than memory copy

• Works well on uniform memory architectures

How about NUMA architectures ?

4/16



Context
System Virtualization - Network - Memory Flipping
• Better throughput than memory copy

• Works well on uniform memory architectures

How about NUMA architectures ?

4/16



Context
System Virtualization - NUMA (Recall)

• Remote memory access is costlier compared a local one.

• Modern Oses updated their memory allocation and scheduling
policies to take into account NUMA.

5/16



Problematic
System Virtualization - Network - NUMA

In a virtualized NUMA environment, the trend is to allocate a whole
node for the CVM. Hence, the CVM’s memory is usually on a different
NUMA node than those of VMs.

6/16



Problematic
System Virtualization - Flipping - NUMA

With this layout, repeated memory flipping operations leads to the
VM’s transparent memory migration from one node to another.

7/16



Problematic
System Virtualization - Flipping - NUMA

To confirm this hypothesis, we ran an E-Commerce benchmark from
the BigDataBench suite (Eight TPC-DS Web Queries).
We monitor VM2’s mem % on each node during the experiment

8/16



Problematic
System Virtualization - Flipping - NUMA
At the end of the experiment, up to 22% ≈ 3,6GB of the VM
memory becomes remote.

9/16



Consequences
Effects of Flipping on NUMA

Is this really a problem ?

Imagine a sprinter preparing for a 200m race.
On the race day, suddenly it is no more 200m but a 2km marathon.
It is clear that he/she will not perform as well as if it was a 200m
race.

10/16



Consequences
Effects of Flipping on NUMA

Analogy to Virtualization

10/16



Consequences
Effects of Flipping on NUMA

Analogy to Virtualization : STREAM before & after flipping

10/16



Our approaches
Dedicated page pool

• Maintain a pool of pages acquired from previous flipping.

• For each flipping operation, pick pages in this pool (if no
available pages, then domalloc)

• These pages can’t be used by other kernel processes.

11/16



Our approaches
Dedicated page pool

• Maintain a pool of pages acquired from previous flipping.

• For each flipping operation, pick pages in this pool (if no
available pages, then domalloc)

• These pages can’t be used by other kernel processes.

11/16



Our approaches
Dedicated page pool - Pool size

What about the pool size ?

• Define a static pool size by calibration.

• Dynamic pool size

Algorithm 0 Dynamic poolSize estimation algorithm
1: compute used_poolSize
2: if used_poolSize > 90% then
3: add 10% of poolSize
4: else if used_poolSize < 20% then
5: remove 10% of poolSize
6: end if
7: set new poolSize value

12/16



Our approaches
Dedicated page pool - Pool size

What about the pool size ?

• Define a static pool size by calibration.

• Dynamic pool size

Algorithm 1 Dynamic poolSize estimation algorithm
1: compute used_poolSize
2: if used_poolSize > 90% then
3: add 10% of poolSize
4: else if used_poolSize < 20% then
5: remove 10% of poolSize
6: end if
7: set new poolSize value

12/16



Our approaches
Dedicated page pool - Pool size

What about the pool size ?

• Define a static pool size by calibration.

• Dynamic pool size

Algorithm 2 Dynamic poolSize estimation algorithm
1: compute used_poolSize
2: if used_poolSize > 90% then
3: add 10% of poolSize
4: else if used_poolSize < 20% then
5: remove 10% of poolSize
6: end if
7: set new poolSize value

12/16



Our approches
Asynchronous memory migration

Asynchronously migrate all pages which became remote due to
memory flipping.

13/16



Our approches
Asynchronous memory migration

But, when should we migrate ?

• Periodically
We define a period and for each corresponding epoch, migrate
all pages which became remote.

• Based on a threshold value
We define a threshold value which corresponds to the
maximum remote memory authorized. Once this threshold is
reached, the asynchronous migration is triggered.

14/16



Our approches
Asynchronous memory migration

But, when should we migrate ?

• Periodically
We define a period and for each corresponding epoch, migrate
all pages which became remote.

• Based on a threshold value
We define a threshold value which corresponds to the
maximum remote memory authorized. Once this threshold is
reached, the asynchronous migration is triggered.

14/16



Our approches
Asynchronous memory migration

But, when should we migrate ?

• Periodically
We define a period and for each corresponding epoch, migrate
all pages which became remote.

• Based on a threshold value
We define a threshold value which corresponds to the
maximum remote memory authorized. Once this threshold is
reached, the asynchronous migration is triggered.

14/16



Evaluations
Does our solutions mitigate the issue ?

We implemented our solutions in the Xen hypervisor 4.9.0 and
introduced modest changes in the Linux Kernel 4.14.2.

15/16



Evaluations
Does our solutions mitigate the issue ?

We implemented our solutions in the Xen hypervisor 4.9.0 and
introduced modest changes in the Linux Kernel 4.14.2.

15/16



Evaluations
Does our solutions mitigate the issue ?

We implemented our solutions in the Xen hypervisor 4.9.0 and
introduced modest changes in the Linux Kernel 4.14.2.

15/16



Conclusion

Thank you for your attention!!!
Feel free to ask any question.

16/16


	Context
	System Virtualization


