
Memory flipping: a threat to NUMA virtual
machines in the Cloud.

Djob Mvondo
LIG

University Grenoble Alpes
Grenoble, France

barbe-thystere.mvondo-djob@
univ-grenoble-alpes.fr

Boris Teabe
IRIT

University of Toulouse
Toulouse, France

boris.teabedjomgwe@enseeiht.fr

Alain Tchana
I3S

University of Nice
Nice, France

alain.tchana@univ-cotedazur.fr

Daniel Hagimont
IRIT

University of Toulouse
Toulouse, France

daniel.hagimont@enseeiht.fr

Noel De Palma
LIG

University Grenoble Alpes
Grenoble, France

noel.de-palma@univ-grenoble-alpes.fr

Abstract—vNUMA is the most recent technology used
by hypervisors to deal with Non Uniform Memory Ac-
cess (NUMA) machines, which currently composed most
datacenters. vNUMA consists in presenting to the virtual
machine (VM) the initial mapping (at boot time) of its
virtual resources to physical resources. By this way, all
NUMA optimizations implemented by almost all VM’s OS
(e.g. Linux) can become effective. However, in order to be
effective itself, vNUMA imposes that the initial resource
mapping of the VM should remain unchanged during the
VM lifetime. Current hypervisors enforce this requirement
by avoiding virtual resource migration (between different
NUMA nodes, in the same machine), VM migration (be-
tween different machines), and memory ballooning.

However, we found that memory flipping - the most
efficient network virtualization approach - violates the
above requirement. In other words, a VM which performs
network operations leads the hypervisor implicitly per-
forms memory page migrations. In this paper, we show
that violating this requirement can degrade performance
by up to 18%. We present two solutions which mitigate
the issue. We prototype these solutions in Xen hypervisor,
a popular open source hypervisor, which is widely used by
Amazon Web Services. The evaluation results, performed
with well known benchmarks, show that our two solutions
are able to almost cancel the issue, while keeping memory
flipping effective.

I. INTRODUCTION

Virtualization is an essential technology in the Cloud.
It allows the sharing of hardware resources between
multiple users while enforcing isolation between them.
Cloud users benefit from an isolated environment in the
form of virtual machines (VMs). This is possible thanks

to the hypervisor which is a software layer responsible
for the management and sharing of hardware resources
between all VMs. In Para-Virtualization (noted PV)
and Hardware-Assisted Para-Virtualization (PV-HVM)
models1, a privileged VM (that we call privVM, known
as Dom0 in Xen [3]) embeds I/O drivers (network and
disk) and services as a proxy for user VMs (that we
call unprivVM, known as DomU in Xen) when they
send/receive I/O requests. This is called the split driver
model in the literature. It works as follows.

To illustrate, let us consider the reception of a network
packet. Every unprivVM includes a fake device driver
(called frontend). The latter is linked to a virtual driver
(called backend driver) located in the privVM. Once the
packet is received by the network card, the real driver
located in the privVM is informed. The real device driver
identifies the destination VM and informs the backend
driver linked to the frontend driver of that destination
VM. The backend then synchronizes with the frontend
for sending the packet to the VM. As one could see,
this path is too complex and has been subject of several
optimization. The most important among them, which has
been adopted by almost all hypervisor vendors, consists in
avoiding packet copy between the privVM and unprivVM.
The current approach to do so is memory flipping.

Memory flipping consists in exchanging page own-
ership between the unprivVM and the privVM. This

1PV and PV-HVM are the widely used virtualization models because
the provide the best performance.

means that the privVM gives to the target VM the pages
that contain the requests, while the unprivVM answers
by transferring the right of other memory pages to the
unprivVM. Memory flipping is currently implemented
by almost all hypervisors. For illustration, we use
Xen hypervisor, the most popular hypervisor. However,
the contributions described in the paper can be easily
implemented in other hypervisor. The memory flipping
mechanism provides a significant performance benefit for
I/O applications but has a significant disadvantage for
VMs on NUMA architectures.

Currently, almost all servers in data centers are
equipped with a NUMA architecture. A NUMA archi-
tecture relies on a complex memory topology with both
a multi-level cache hierarchy and a complex network to
connect NUMA nodes which each contains a memory
bank and several cores. To ensure good performance
with such a topology, the OSes must ensure that the
applications always run on the node hosting their data
to avoid remote memory access. Virtualization does not
ignore this and proposes options such as vNUMA for
managing NUMA for VMs. vNUMA is an option in
Xen and VMware which allows the NUMA topology
(including the location of memory pages on NUMA
nodes) of a VM to be presented to its guest OS. In
other words, NUMA topologies of VMs are virtualized
and presented to them at startup. Therefore, guest OSes
are aware of the NUMA topology and can therefore
avoid remote memory access. For vNUMA to be efficient,
the presented topology of a VM must be static and
unchanged during the VM lifetime. This is because today
OSes do not yet support a dynamic NUMA topology.
The hypervisor usually disables for VMs using vNUMA
all mechanisms likely to modify their topology: VM
migration and memory ballooning.

We noticed that memory flipping can be the cause of
topology modification for VMs. Indeed, the widespread
configuration on a NUMA topology dedicates an entire
node to the privVM to isolate it from other unprivVMs.
Frequent network communications between the privVM
and a unprivVM (the backend driver and the frontend
driver) lead to a significant exchange of pages between
the two VMs, so a displacement of the memory of the
unprivVM from its initial nodes to the privVM node and
vice versa. Note that after the frontend drivers release
the pages containing the request data, those pages can be
used by other applications in the unprivVM, causing
a remote memory access for these applications and
therefore leading to degraded performance. The solution
provided in Xen for this is to use memory copy during

the communication between the backend driver and the
frontend driver. But, this solution is not suitable because
many memory copies lead to disastrous performance for
I/O applications in unprivVMs.

In this paper, we present two solutions which address
this issue due to memory flipping for VM hosted
on NUMA architectures. These solutions are able to
almost cancel remote memory access induced by memory
flipping, thus ensuring optimal applications performance.

• The first solution establishes a pool of pages in the
unprivVM, and these pages are dedicated to memory
flipping and cannot be used by other applications
in the unprivVM. By doing so, we ensure that
only pages in the pool can be remote, and this
prevents any remote access from applications in the
unprivVM.

• The second solution is to keep the current communi-
cation mechanism as it is. But periodically, we asyn-
chronously repatriate pages (from our unprivVM)
that have been transmitted to the privVM.

We implemented our solutions within the Xen hypvervisor
and evaluated these solutions with well-known bench-
marks. Our evaluation shows that our solutions are able to
almost cancel remote memory access induced by memory
flipping without resorting to memory copy, thus ensuring
optimal applications performance. In the rest of the paper,
Section II presents an overview of virtualization and
NUMA handling virtualization. Section III presents the
motivations of the work. Section IV contains our solutions
followed by the evaluation in Section V. Section VI
presents the related works and finally we conclude in
Section VII.

II. BACKGROUND

A. Virtualization

Virtualization technologies are becoming more and
more popular. Nowadays it is hard to imagine data
centers, web hosting and other e-infrastructures without
virtualization. The main advantage of virtualization tech-
nologies is optimal hardware utilization. Several instances
of virtual machines can be run on the same physical host,
therefore improving resource utilization. The hypervisor
(Virtual machine monitor) is the software layer which
takes control over hardware resources and allocates them
to VMs according to a given management policy.

Xen is one of the most popular free and open source
baremetal hypervisors that are in use nowadays [3]. Xen’s
implementation follows the para-virtualization model [10].
In the latter, VMs’ OS are modified to be aware of the
fact that they are virtualized, thus reducing virtualization

2

overhead. In Xen, hardware components can be organized
into two categories. Those which do not require drivers
(e.g. memory and CPU) and the others which do (e.g. I/O
devices). The logic for managing components of the first
category is implemented at the hypervisor level. About
components of the second category, things are little more
tricky.

B. I/O virtualization in Xen

In Xen, the real driver for each I/O device resides
within a particular VM called privVM (privileged VM).
The privVM conducts I/O operations on behalf of VMs
(called unprivVM) which run a fake driver called frontend,
as illustrated in Fig. 1. The frontend communicates
with the real driver via a backend driver (within the
privVM) which allows multiplexing the real device. This
I/O virtualization architecture is used by the majority of
virtualization systems and known as the the split driver
model. It enhances the reliability of the physical machine
by isolating faults which occur within drivers. Thus, in
the privVM, device drivers communicate with backend
drivers (step (2) in Fig. 1 and these latter communicate
with frontend drivers in unprivVMs (step (3)) allowing
them to have a direct path to I/O devices. Finally, frontend
drivers transmit the I/O request data to or from userspace
applications (step (4)).

Fig. 1: Split driver model in Xen.

The communication mechanism (step (3) in Fig. 1)
between a frontend driver and a backend driver in Xen is
based on three elements: a ring mechanism, access grants
on pages, and event channels. Let us consider a network
communication from the backend driver to the frontend
driver (knowing that the mechanism is similar in the
opposite direction and also with a disk operation). When
a network packet is transmitted to the backend driver,

the latter builds a request containing all information
on the received data and puts the request in the ring.
Then, the backend driver notifies the frontend driver via
event channels. The frontend driver reads the request
and accesses the data. Given that the data is stored in
pages of the privVM, the hypervisor has to give the access
grants on these pages to the unprivVM. To counterbalance
the transmission of these pages, the hypervisor gives
access grants on some pages from the unprivVM to the
privVM. This mechanism is known as memory flipping
and allows a zero-copy memory communication between
the backend driver and the frontend driver. During step
(4) (Fig. 1), the guest OS copies the received data in the
user space and frees the pages containing the data for
further usage. The memory flipping mechanism provides
a significant performance benefit for I/O applications
but has a significant disadvantage for VMs on NUMA
topologies.

C. NUMA in virtualization

Fig. 2: A NUMA topology.

Today’s machines have evolved to NUMA architectures.
A NUMA architecture is an interconnection of several
NUMA nodes that each contains a memory bank and
several cores (see Fig. 2). To ensure good performance
with such an architecture, the OSes must ensure that the
applications always run on the node hosting their data to
avoid remote memory access. Accessing local memory
gives higher throughput and lower latency compared with
remote memory access. The approach advocated by most
of the hypervisors for handling NUMA architectures is
the static approach with vNUMA. At the time of writing
of the paper, vNUMA is supported by Xen, VMware and
hyper-V.

3

With vNUMA, each VM is presented a static virtual
NUMA (noted vNUMA) topology, which corresponds to
the mapping of its allocated resources on NUMA nodes
at boot time. The implementation of vNUMA consists
in (for the hypervisor) storing the virtual topology of
the VM in its ACPI tables, so that the guest OS uses
it at boot time as any OS does. This implementation
has the advantage to be straightforward. However, its
main limitation is that a change in the NUMA topology
cannot be taken into account without rebooting the VM.
Therefore, the hypervisor usually disables on VMs using
vNUMA all mechanisms likely to modify their topology:
VM migration and memory ballooning.

We noticed that memory flipping can be the cause of
topology modifications for VMs as explained in Section I.
The solution provided by Xen is not suitable because
many memory copies lead to disastrous performance
for I/O applications in unprivVMs. This statement is
confirmed by an evaluation we carried out whose results
are presented in Section III.

III. MOTIVATIONS

As mentioned in Section II, the widespread configura-
tion on a NUMA topology dedicates an entire node to the
privVM to isolate it from userVMs. And memory flipping
affects the NUMA topology of a userVM and severely
impacts its performance. In this section, we performed a
set of experiments with the following purposes:

1) to demonstrate that memory flipping actually affects
the NUMA topology of a userVM;

2) to evaluate the impact on application performance;
3) to show that memory copy (which is the solution

proposed by Xen) leads to significant performance
degradation for I/O applications;

Details about the experimental environment and used
benchmarks can be found in Section V. The experimental
procedure is as follows. Initially, in a userVM configured
on a single NUMA node, we run the Stream benchmark
and measure the throughput (first run). The Stream
benchmark measures the memory bandwidth (only) and
is very sensitive to remote memory access. This first
run corresponds to the reference performance for the
benchmark because it does not involve remote memory
access and neither memory flipping nor memory copy.
Then, we execute Big Bench which is configured to
perform I/O operations with another VM on a second
server. During the execution of Big Bench, we continu-
ously monitor the memory layout of our userVM, and
we measure the performance of the benchmark. We run
Big Bench because its involve I/O operations, therefore

memory flipping or memory copy is used. This creates the
pertubation we want to observe in the NUMA topology
of the userVM. Then, we rerun the Stream benchmark to
obtain the new value of the memory throughput (second
run). This procedure is executed with vanilla Xen as
the guest OS using firstly memory flipping (we call it
xenflip), and secondly memory copy (we call it xencopy).

For this experiment, we are interested in four mea-
surements: (1) the memory layout of our userVM during
the execution of Big Bench, (2) the performance of Big
Bench, (3) the throughput of Stream benchmark (first
and second run) and finally, (4) the number of remote
memory allocation in our userVM during the executions
of the Stream benchmark.

The obtained results are presented in Fig. 3 and Fig. 4.
From left to right in Fig. 3, we have: the memory layouts
of our userVM, respectively with memory flipping (a)
and memory copy (b), and the performance of Big Bench
(c). Fig. 4 shows the throughput of the Stream benchmark
and the number of remote memory allocations during the
executions of the Stream benchmark.

The first observation is on Fig 3(a) where we simply
observe a progressive displacement of our userVM
memory from its initial node to the privVM’s node with
memory flipping. After 180 minutes of execution, 25%
of the memory of our userVM has been relocated to
the privVM’s node. This displacement is not observed
with the memory copy (see Fig 3 (b)). However, in
Fig 3(c), we note that the performance of Big Bench
is significantly degraded with memory copy compared
to memory flipping. This shows why memory copy
cannot be a suitable solution to the problem we address.
Fig. 4(left) shows the loss in performance for the Stream
benchmark with memory flipping, about 13% between
the two runs (first and second run). This is explained by
the fact that an amount of our userVM memory which
was relocated to the privVM’s node (consequently to
the execution of Big Bench) is afterward used by the
Stream benchmark. The solid lines in the histogram
boxes represent the number of remote allocations during
the executions of the Stream benchmark (the axis to
which it refers to is on the right). There isn’t any remote
allocation with memory flipping during the first run, but
this is not the case during the second run. This explains
the performance degradation for the second run. With
memory copy, the number of remote allocation remains
nul. The main lessons we learn from these experiments
are:

• memory flipping can effectively lead to NUMA
topology changes for an userVM;

4

a)

Local Remote
%
	M

em
or
y

0
20
40
60
80
100
120

Time	(min)
0 25 50 75 100 125 150 175

b)

%
	M

em
or
y

0
20
40
60
80
100
120

Time	(min)
0 25 50 75 100125150

c)

Ex
ec
.	t
im
e	
(m
in
)

0

50

100

150

200

250

Flipping Copy

Fig. 3: unprivVM memory layout with memory flipping (a) and memory copy (b) - application performance for Big
Bench (c).

Fig. 4: Performance of the Stream benchmark: throughput
(left axis / histogram boxes) and number of remote
allocations (right axis / solid lines).

• memory copy is a solution to the problem, but
causes significant performance degradation for I/O
applications;

• the displaced memory of a userVM can later be used
by applications, causing performance degradation.

In the rest of the article, we propose two effective
solutions to solve this problem.

IV. CONTRIBUTIONS

In this section, we propose two solutions to reduce
the impact of memory flipping on a VM running on
a NUMA architecture. The solutions we propose have
been implemented within Xen hypervisor but can be
easily integrated into other hypervisors implementing the
vNUMA option.

A. Dedicated page pool for memory flipping

With the current implementation within Xen, after
a memory flip, unprivVM memory pages which are
relocated on the privVM node can be subsequently used
by applications after they have been freed (step (4) of

Fig. 1). Our first solution aims at limiting the number
of memory pages that can be remote for an unprivVM,
and also preventing these pages from being used by
applications. At startup of an unprivVM, we create a pool
of pages that are dedicated to memory flipping. Let’s
call poolSize the size of the pool. These pages cannot
be used by other applications in the unprivVM. After a
memory flip, pages of unprivVM relocated on the privVM
node are not freed anymore, but are rather added to the
pool to replace the pages that have been yielded to the
privVM, so that they will be used for subsequent flips and
will be relocated on the privVM node. Thus, our solution
limits the number of pages that can become remote for
the unprivVM and also ensures that these remote pages
cannot be used by any other application.

Fig. 5 illustrates the functioning of our solution in
a simple scenario with the privVM running on node 1
and an unprivVM running on node 2. At step (1), all
the pages of our unprivVM are on their initial node, and
some pages are placed in the page pool for memory
flipping. After a memory flip on a single page in step
(2), a page of unprivVM is now on the privVM node.
But this page cannot be used by any application in the
unprivVM because it is part of the page pool dedicated
to memory flipping. In step (4), after two successive
memory flips, we can observe that only pages in the
pool are used for flipping, thus limiting the number of
pages from the unprivVM which can be remote. A key
point of this solution is the poolSize value. Two possible
approaches can be used to define this value for a VM:
the first is static while the second is dynamic.

Static value for poolSize. This approach consists in
assigning a static value to poolSize for a VM. This value
is obtained by calibration. The latter is done by running
several I/O applications in a VM and monitoring for each

5

Fig. 5: Illustration of the dedicated page pool for memory
flipping.

application the number of pages needed for the memory
flipping. Then, we can use the highest number of needed
pages as the value of poolSize. This approach has two
big disadvantages: (1) calibration is a fastidious task
which requires a lot of time and (2) with new application
types appearing every day in the cloud, we cannot ensure
that a single value of pooSize will always be suitable,
hence the need for a dynamic solution.

Dynamic value for poolSize. The dynamic approach,
which is the one we advocate, consists in setting initially
an arbitrary value (we call it poolSizeinit) for the
poolSize of a VM. It is obvious that the value of
poolSizeinit must be lower than the total memory of the
VM. Then, during the execution of an I/O application
in the VM, poolSize is adjusted according to the
activity. Algorithm 1 presents the algorithm used to
adjust poolSize. At each memory flip, we compute the
percentage of the pool which is used (line 1). If the
percentage is greater than 90%, then we increase the pool
size by 10% (line 3). And similarly, if the percentage
is less than 20%, we decrease the size of the pool by
10%. 90% and 20% are thresholds we obtained after
conducting a set of experiments to decide which are
suitable to decide when to decrease and increase the
poolSize.

Algorithm 1 Dynamic poolSize estimation algorithm

1: compute used_poolSize
2: if used_poolSize > 90% then
3: add 10% of poolSize
4: else if used_poolSize < 20% then
5: remove 10% of poolSize
6: end if
7: set new poolSize value

B. Asynchronous memory migration

This solution repatriates the remote pages of an
unprivVM, by migrating them asynchronously to their

initial node. Initially, we let memory flipping behave
normally. But at a given time, this solution starts a process
which migrates the pages that have been relocated on the
privVM node back to the unprivVM nodes. This allows
the unprivVM to recover its initial topology and thus to
avoid remote memory access for running applications.
Fig. 6 presents a simple example of how this solution
works on two nodes. In step (1), all the memory of the
unprivVM is on the initial node. In step (2) and (3) we
have two consecutive flips on memory pages. In step (4),
our solution migrates the pages of the unprivVM to their
initial node, which allows recovering the initial topology.
Defining the frequency and the condition in which the
memory migration process has to be started is the main
problem with this solution. Two possible approaches can
be used: the first is periodic and the second is based on
the amount of unprivVM memory turned to remote.

Fig. 6: Illustration of the asynchronous memory migra-
tion.

Periodic memory migration. In this approach, we set
a period (we call it periodflip) which defines the times
when remote pages of an unprivVM will be relocated
back to their initial nodes. The administrator can set
periodflip when starting the VMs. A big value is not
suitable because the amount of remote memory can
become huge before the migration process gets activated,
while a small value can lead to a significant overhead.
In the evaluation section, we give more details about the
order of magnitude for periodflip.

Based on the amount of remote memory. In
this approach, we launch the migration process
when an amount of remote memory (we call it
remote_memSize) is reached for an unprivVM. The
administrator sets remote_memSize at startup of a
VM. In the evaluation section, we give more details
about the order of magnitude of remote_mem.

Independently of the design used, the migration process
is handled by the privVM resources.

6

a)

Local Remote
%
	M
em
or
y

0

20

40

60

80

100

120

Time	(min)
0 25 50 75 100 125 150

b)

%
	M
em
or
y

0

20

40

60

80

100

120

Time	(min)
0 25 50 75 100 125 150

c)

%
	M
em
or
y

0

20

40

60

80

100

120

Time	(min)
0 25 50 75 100125150

Fig. 7: unprivVM memory layout after running Big Bench: (a) for vanilla Xen, (b) for the page pool solution and
(c) for the asynchronuous memory migration

V. EVALUATION

This section presents the evaluation results of our
solutions. We implemented prototypes of our solutions
in Xen 4.7 [3].

A. Experimental setup and methodology

Servers. We used two Dell servers with the following
characteristics: two sockets, each linked to a 65GB
memory node; each socket includes 26CPUs (1.70GHz);
the network card is Broadcom Corporation NetXtreme
BCM5720, equidistant to the sockets; we used Xen 4.7
and both privVM and unprivVM run Ubuntu Server
14.04 with Linux kernel 4.10.3. Otherwise specified, each
unprivVM is configured to use vNUMA option with 16
vCPUs and 16GB of memory on a single NUMA node
and 20GB of disk; the privVM has a dedicated NUMA
node for its execution.

Benchmarks. We used well known macro-benchmarks
for analyzing the impact of memory flipping on the
NUMA topology of an unprivVM and evaluate its impact
on application performance.

• Big Bench. [6] It is an open-source big data bench-
mark suite. Big Bench proposes several benchmark
specifications to model five important application
domains, including search engine, social networks,
ecommerce, multimedia data analytics and bioinfor-
matics. The metric used for this benchmark is the
execution time.

• LinkBench. [2] LinkBench is a database benchmark
developed to evaluate database performance for
workloads similar to those of Facebook’s production
MySQL deployment. The metric used for this
benchmark is the execution time.

• Stream benchmark. [8] Stream is a simple synthetic
benchmark program that measures sustainable mem-
ory bandwidth (in GB/s) and the corresponding
computation rate for simple vector kernels. The
metric used for this benchmark is the memory
bandwith.

Configurations of our solutions. We start with the
page pool solution. In our evaluation, knowing all
the obvious disadvantages of the static approach (see
Secion IV-A), we decided to use only the dynamic
approach to set the value of poolSize (see Secion IV-A).
The value of poolSizeinit is set to 500MB during the
evaluation.

For asynchronous memory migration, the results
we present are those obtained with the second ap-
proach (the migration process is started when a given
amount of remote pages is reached, see Secion IV-B).
We observed that with the best value for periodflip
(900sec) and remote_memSize (500MB), the bench-
marks have the same performance. Therefore, we decided
to present only the results of the second approach with
remote_memSize set to 500MB.

Methodology. Our evaluation aims to show that :
• our solutions can limit the amount of memory that

becomes remote;
• application performance is not impacted when our

solutions are used.
The experimental procedure we used is similar to the
one in Section III. The procedure was repeated with
vanilla Xen (with memory flipping), and with both of
our solutions. Initially, we run the Stream or LinkBench
benchmark and measure the performance (first run). Then,
we execute Big Bench which is configured to perform
I/O operations with another VM on a second server.

7

During the execution of Big Bench, we continuously
monitor the memory layout of our unprivVM. Then, we
rerun the Stream or LinkBench benchmark to obtain the
new performance level (second run). This procedure is
executed with vanilla Xen and both of our solutions.

B. Results analysis

Fig. 7 and Fig. 8 show the results of these experiments.
Fig. 7 presents the memory layout of the unprivVM
during Big Bench execution. We observe that with vanilla
Xen, after 180 minutes of execution, about 25% of the
memory of the unprivVM was moved to another node
(Fig. 7(a)), thus modifying its NUMA topology. With both
of our solutions, we observe that the amount of displaced
memory is kept very small. This can be observed in
Fig. 7(b) (page pool) and (c) (memory migration). Only
a very little percentage (3%) of the memory is remote.
Fig. 8 (a) and (b) present respectively the results for
the Stream and LinkBench benchmarks, and the number
of remote allocations. The solid lines in the histogram
boxes of Fig. 8 represent the number of remote allocations
during the executions (the axis to which it refers to is on
the right). We can observe that the throughputs obtained
with our solutions for the Stream benchmark (Fig. 8 (a))
are very close for the first and second run (the higher the
better). This is not the case with vanilla Xen which has a
performance degradation of about 13%. There isn’t any
remote allocation with memory flipping during the first
run of the Stream benchmark, but this is not the case
during the second run. This explains the performance
degradation of the Stream benchmark. With our solutions,
the number of remote allocation remains constant and
nul. We observe a similar behavior with LinkBench in
Fig. 8 (b).

VI. RELATED WORK

Several research studies have investigated improve-
ments of I/O operations and NUMA handling in virtu-
alized environements. This state of the art is organized
according to these two topics.

I/O and virtualization. The integration of I/O devices
in virtualized environements has always been a subject of
primary importance. Many research works investigated
the improvement of I/O operations’ performance. We
can distinguish three main categories of work according
to the implementation level: (1) hardware level works
which focus on hardware modification to improve the
I/O performance [1], (2) hypervisor level works which
propose new scheduling approaches to reduce the latency
of I/O requests [12], [13] and finally, (3) guest OS-level
works which focus on the optimization the software layer

for the I/O processing in the userVM and the privVM [11].
Works on memory flipping and memory copy techniques
are in this third category. The introduction of para-
virtualization with Xen (which is the flagship), pushed
the hypervisor designers to propose more efficient I/O
architecture, hence leading to the split driver model. The
latter allows isolation for fault tolerance while offering
interesting performance compared to full virtualisation.
The first implementation of the split driver model within
Xen was based on the memory copy. But the performance
of applications with this approach was very low and had to
be improved. Therefore, Xen introduced memory flipping
which ensures zero memory copy during the processing
of I/O operations. Several works have studied the split
driver model and the frontend/backend communication
mechanism [4], [11]. The most interesting of these
works proposes to establish a shared memory region
between all the VMs for implementing frontend/backend
communication [4]. This approach seems interesting
because it provides much better performance for I/O
applications compared to memory flipping and also, it
avoids the problem that we solve in this article. However,
one important limitation of this approach, which is
significant considering that we are in the context of the
Cloud, is security. Indeed, establishing a shared memory
region between all the VMs breaks VM isolation and
opens a gateway to many exploits from malicious hackers.

NUMA and virtualization. NUMA management is
ubiquitous in both virtualized and non-virtualized envi-
ronments. Since the appearance of NUMA architecture,
a plethora of scientific works have focused on handling
NUMA in non virtualized environments [5], [7]. Gen-
erally, studies on NUMA in virtualized environments
are simple translations of solutions in non-virtualized
environments [9]. The main question that researchers had
to answer is the place where NUMA specificities should
be handled: in the hypervisor or in the guest OS. Most
hypervisors (Xen, VMWare and Hyper-V) have adopted
a simple solution called vNUMA. The latter consists in
presenting the NUMA topology of the VM to the guest
OS and preserving this topology (by disabling operations
that would modify it). This solution is straightforward
because, it allows the guest OS to benefit from all the
already implemented kernel optimisations for NUMA.
However, some studies demonstrated that this approach
is not suitable for some applications which would need
a dynamic NUMA approach [9].

Position of our work. To the best of our knowledge,
we are the first work which addresses the problem of
the compliance between vNUMA and memory flipping,

8

Asyn.	CopyPoolFlipping

First	run Second	run

N
um

.	A
llocation

0

105

2×105

3×105

4×105
Th
ro
ug
hp
ut
	(G

B
/s
)

0
10
20
30
40
50
60

a) b)

Asyn.	Copy PoolFlipping

N
um

.	A
llocation

0

105

2×105

3×105

4×105

Ex
ec
.	T
im
e	
(m
in
)

0
10
20
30
40
50
60

Fig. 8: (a) Stream and (b) LinkBench benchmark results.

which are techniques used by almost all hypervisors. The
only existing solution is that of Xen which relies on mem-
ory copy, thus degrading I/O performance in VMs. Our
solutions allow to keep the benefits of locality in NUMA
architectures while also keeping good performance for
I/O applications.

VII. CONCLUSION

We observed that after a significant number of memory
flips, a notable part of the memory of unprivVMs is
moved to the node of the privVM, thus modifying their
NUMA topology and forcing these VMs to make remote
memory access. This situation has a negative impact on
application performance in the VMs. In this article, we
proposed two solutions which attempt to enforce a static
NUMA topology for VMs despite memory flipping. We
have implemented and evaluated our solutions in the Xen
hypervisor. The evaluation shows that our solutions allow
to get close to a static topology for VMs, thus limiting
remote memory access and providing better performance
than vanilla Xen for I/O applications.

VIII. ACKNOWLEDGMENT

This work was supported by the HYDDA Project (BPI
Grant) and the IDEX IRS (COMUE UGA grant).

REFERENCES

[1] Sr-iov. https://pcisig.com/specifications/iov/. Visited on October
2017.

[2] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.
Linkbench: A database benchmark based on the facebook social
graph. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 1185–
1196, New York, NY, USA, 2013. ACM.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA, 2003. ACM.

[4] R. C. Chiang, H. H. Huang, T. Wood, C. Liu, and O. Spatscheck.
Iorchestra: Supporting high-performance data-intensive applica-
tions in the cloud via collaborative virtualization. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, pages 45:1–45:12,
New York, NY, USA, 2015. ACM.

[5] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. Traffic management: A holistic
approach to memory placement on numa systems. In Proceedings
of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 381–394, New York, NY, USA, 2013. ACM.

[6] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-
A. Jacobsen. Bigbench: Towards an industry standard benchmark
for big data analytics. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13,
pages 1197–1208, New York, NY, USA, 2013. ACM.

[7] B. Lepers, V. Quéma, and A. Fedorova. Thread and memory
placement on numa systems: Asymmetry matters. In Proceedings
of the 2015 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’15, pages 277–289, Berkeley, CA,
USA, 2015. USENIX Association.

[8] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newslet-
ter, pages 19–25, Dec. 1995.

[9] G. Voron, G. Thomas, V. Quéma, and P. Sens. An interface to
implement numa policies in the xen hypervisor. In Proceedings of
the Twelfth European Conference on Computer Systems, EuroSys
’17, pages 453–467, New York, NY, USA, 2017. ACM.

[10] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance
in the denali isolation kernel. SIGOPS Oper. Syst. Rev., 36(SI):195–
209, Dec. 2002.

[11] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu. vturbo:
Accelerating virtual machine i/o processing using designated turbo-
sliced core. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC’13, pages 243–254,
Berkeley, CA, USA, 2013. USENIX Association.

[12] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella,
and D. Xu. vslicer: Latency-aware virtual machine scheduling
via differentiated-frequency cpu slicing. In Proceedings of the
21st International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’12, pages 3–14, New York, NY,
USA, 2012. ACM.

[13] L. Zeng, Y. Wang, W. Shi, and D. Feng. An improved xen credit
scheduler for i/o latency-sensitive applications on multicores. In
2013 International Conference on Cloud Computing and Big Data,
pages 267–274, Dec 2013.

9

