
OFC: An Opportunistic
Caching System for
FaaS Platforms

Djob Mvondo
Mathieu Bacou

Kevin Nguetchouang, Lucien Ngale
Stéphane Pouget

Josiane Kouam
Renaud Lachaize

Jinho Hwang
Tim Wood

Daniel Hagimont
Noël De Palma

Bernabé Batchakui
Alain Tchana

Univ. Grenoble Alpes, ENS Lyon
Télécom SudParis, IP Paris
ENSP Yaoundé
ENS Lyon
Inria
Univ. Grenoble Alpes
Facebook
The George Washington University
University of Toulouse
Univ. Grenoble Alpes
ENSP Yaoundé
ENS Lyon, Inria

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 2

business function 1business function 1business function 1business function 1

business function 2bbusiness function 2bbusiness function 2b

Context: Function-as-a-Service

API gateway

object store

database server

Function-as-a-Service architecture in a serverless cloud.

triggers

● Cloud-native applications
– Built as collections of (chains of) functions
– Rely on platform-provided back-end servers (serverless)
– Mostly stateless by design

business function 2abusiness function 2a

interface remote back-endFaaS runtime platform

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 3

business function 1business function 1business function 1business function 1

business function 2bbusiness function 2bbusiness function 2b

Extract-Transform-Load patterna

API gateway

object store

database server

triggers

1.Extract (E) data from remote persistent storage (object store…)
2.Transform (T) by performing some computation (blur image…)
3.Load (L) result to remote persistent storage

business function 2abusiness function 2a

interface remote back-endFaaS runtime platform

Function-as-a-Service architecture in a serverless cloud.

a. H. Fingler et al. USETL: Unikernels for Serverless Extract Transform and Load. In APSys, 2019.

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 4

Performance issue: latency
● Storage access is a big

issue with ETL
● Problem of data locality

– Out-of-infrastructure
remote storage

– Even worse for pipelines

invocation

preparation execution

sc
he

du
lin

g
co

ld
 s

ta
rt

re
q.

 in
je

ct
io

n

ex
tr

ac
t

tr
an

sf
or

m

lo
ad

FaaS performance issues in latency of function invocation,
and concerns of our work.

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 5

Related work
Caching, caching, and caching …

● Cloudbursta

● Infinicacheb

● Pocketc

●

Existing works either require
function modification or
extra-resources (memory)
to provision the cache layer

a. V. Sreekanti et al. CloudBurst: stateful functions-as-a-service. In VLDB Endowment, 2020.
b. A. Wang et al. InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache.
In FAST, 2020.
c. A. Klimovic et al. Pocket: Elastic Ephemeral Storage for Serverless Analytics. In OSDI, 2018.

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 6

Solution: caching in the FaaS age
● Avoid remote storage with in-memory caching
● FaaS characteristics: very short latency, very elastic
● New challenges in the FaaS context:

– How to provision memory for the cache?
– How to make caching scale?
– How to provide caching to functions?

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 7

OFC: Opportunistic FaaS Cache

transparent
efficient
reliable
cache

in-memory
scalable
system

unused
reserved
memory

The three pillars of OFC.

gather
into an

which is a

Opportunistic

Function-as-a-Service

Cache

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 8

OFC: Opportunistic FaaS Cache

Model Trainer
Controller

predictor

RC Coor

Invoker

cacheAgent
Sizer

proxy rcLib RC M

func-monitor

Invoker

cacheAgent
Sizer

proxyrcLibRC M

func-monitor
...

Base FaaS platform

Caching system

Memory reuse
(Machine learning)

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 9

Unused reserved memory
1.Over-provisioning by tenants to

absorb workload variationa

– 50% of functions reserve ≥512MB
– 50% of functions use ≤29MB

2.Keep-alive policy: keep functions
warm to reduce latencyb

– 81% invoked once per min. or less
– Functions kept warm 10~20min

(OpenWhisk, AWS Lambda)

a. R. Ribensaft. What AWS Lambda’s Performance Stats Reveal . Web source, 2020.
b. M. Shahrad et al. Serverless in the Wild: Characterizing and Optimizing the Serverless
Workload at a Large Cloud Provider. In USENIX ATC, 2020.

Sandbox
keep-alive

E1

Booked
memory

Used
memory

New keep-alive round
(up to 10 minutes)Memory

Time

E2 E3

Function running Function idle

Wasted memory

Timeline of a function sandbox illustrating wasted memory.

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 10

Predicting wasted memory
● How much memory is

available to the cache?
– Complex relation with data,

parameters
● Use machine learning!

– White-box functions
 Parameters, inputs…

– High invocation rate
 Quick dataset gathering Relation between memory usage and function

invocation parameters and input.

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 11

Learning memory usage, and more
● Constraints of the FaaS:

– Learn and update models
 Maintain training dataset

– Learn from unknown features: bounds,
sets of values?

 Cannot compute from features
– Prediction speed: on the critical path

of the invocation
 Predict in less than 1ms

● Classification instead of regression
– Predict among 16MB intervals

● Decision trees: J48 (C4.5)
– 92.7% accuracy for exact-or-over

predictions
– Model accurate enough for 95% of

functions in less than 8h of lifetime
– 13x faster at 99% than RandomForest

 While being just as accurate

● ML also used to predict caching
benefits
– Keep only useful data in cache

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 12

OFC: Opportunistic FaaS Cache

transparent
efficient
reliable
cache

in-memory
scalable
system

unused
reserved
memory

The three pillars of OFC.

gather
into an

which is a

Opportunistic

Function-as-a-Service

Cache

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 13

OFC caching mecanisms overview
● OFC leverages RAMClouda

– Distributed
– In-memory
– Fault tolerant

a. J. Ousterhout at al. The RAMCloud Storage System. ACM Trans. On Comp. Sys, 2015.

● RAMCloud can store objects
up to 8MB. We updated this
to 10MB.

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 14

OFC caching mecanisms overview
● On each invoker node:

– RC M: RAMCloud cache master
– CacheAgent: cache autoscaling

 Scale the cache memory up/down
 Monitor the cache pressure
 Perform Garbage Collection

Cache autoscaling: the CacheAgent component.

Invoker

cacheAgent
Sizer

proxy rcLib RC M

func-monitor

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 15

OFC: Opportunistic FaaS Cache

transparent
efficient
reliable
cache

in-memory
scalable
system

unused
reserved
memory

The three pillars of OFC.

gather
into an

which is a

Opportunistic

Function-as-a-Service

Cache

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 16

OFC caching mecanisms overview
● A proxy transparently intercepts function calls to

storage nodes.
– Runtime interception
– Routes request to

cache API (rcLib)

Transparent caching: proxy and rcLib.

Invoker

cacheAgent
Sizer

proxy rcLib RC M

func-monitor

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 17

OFC caching mecanisms overview
● RAMCloud library rcLib:

– Persist data on the local cache
– Ensure consistency with remote storage

Data persistence and consistency
with remote storage.

Invoker

cacheAgent
Sizer

proxy rcLib RC M

func-monitor

Webhook
● To ensure consistency with

OFC, on storage node, a
webhook checks for queries
the cache for incoming read
requests

Remote
storage

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 18

OFC evaluation results
● Does OFC improve serverless functions latencies?

– Single functions
– Multi-stage functions

● Five scenarios
1)Redis
2)OFC Local Hit (LH)
3)OFC Remote Hit
4)Miss (M)
5)Default (Swift)

Memory 512 GB

OS Ubuntu 16.04.7 LTS

CPUs 2 Intel Xeon E5-2698v4
CPUs (20 cores/CPU)

Disk 480 GB SSD

Network Intel Ethernet 10G 2P
X520 Adapter

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 19

OFC evaluation results
● Single functions:

OFC overcomes Swift by up to 82%

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 20

OFC evaluation results
● Multi-stage

functions

OFC overcomes Swift

by up to 60%

EuroSys'21, April 26–28, 2021 Opportunistic FaaS Cache — Mvondo, Bacou et al. 21

OFC: Conclusion
● OFC leverages ML and

RAMCloud
– Opportunistic caching layer for

serverless functions
● OFC does not require function

modification
– Direct benefit for existing functions

● OFC ensures consistency between
the platform’s cache and the
remote storage

● OFC achieves major latency
improvements
– Up to 82% for single functions
– Up to 60% for multi-stage functions

Checkout OFC source code at
https://gitlab.com/lenapster/faascache/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

