
Fine-Grained Fault Tolerance For Resilient
pVM-based Virtual Machine Monitors

Djob Mvondo∗ Alain Tchana† Renaud Lachaize∗ Daniel Hagimont‡ Noël De Palma∗

∗ Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
Grenoble, France

† ENS Lyon, LIP
Lyon, France

‡ University of Toulouse, IRIT
Toulouse, France

Abstract—Virtual machine monitors (VMMs) play a crucial
role in the software stack of cloud computing platforms: their
design and implementation have a major impact on performance,
security and fault tolerance. In this paper, we focus on the
latter aspect (fault tolerance), which has received less attention,
although it is now a significant concern. Our work aims at
improving the resilience of the “pVM-based” VMMs, a popular
design pattern for virtualization platforms. In such a design,
the VMM is split into two main components: a bare-metal
hypervisor and a privileged guest virtual machine (pVM). We
highlight that the pVM is the least robust component and that
the existing fault-tolerance approaches provide limited resilience
guarantees or prohibitive overheads. We present three design
principles (disaggregation, specialization, and pro-activity), as well
as optimized implementation techniques for building a resilient
pVM without sacrificing end-user application performance. We
validate our contribution on the mainstream Xen platform.

I. INTRODUCTION

Virtualization is a major pillar of cloud computing in-
frastructures because it enables more flexible management
and higher utilization of server physical resources. To this
end, a virtual machine monitor (VMM) abstracts away a
physical machine into a set of isolated guest virtual machines
(VMs). This consolidation advantage comes with the risk
of centralization. The crash of an OS instance in a bare-
metal data center only impacts applications deployed on the
corresponding physical server, whereas the crash of a VMM
in a virtualized data center has a much larger “blast radius“,
resulting in the unavailability of the applications hosted in
all the guest VMs managed by that VMM instance. Besides,
given that the code size and the feature set of VMMs have
grown over the years, the occurrences of such critical bugs
are becoming more likely. For instance, the number of Xen
source code lines has tripled from the first version 1.0 (in
2003) to the current version (4.12.1), as shown in Table I1.

In the present paper, we highlight the fault-tolerance (FT)
limitations of existing VMMs and propose techniques to

We thank our shepherd, Elias Duarte, and the anonymous reviewers for
their insightful comments. This work was funded by the “ScaleVisor” project
of Agence Nationale de la Recherche, number ANR-18-CE25-0016, the
“Studio virtuel” project of BPI and ERDF/FEDER, grant agreement number
16.010402.01, the “HYDDA” project of BPI Grant, and the “IDEX IRS”
(COMUE UGA grant).

1For Linux, we only consider x86 and arm in the arch folder. Also, only
net and block are considered in drivers folder (other folders are not
relevant for server machines).

Xen Hypervisor Linux-based pVM Linux
Xen

#LOC in 2003 187, 823 3.72 Million 19.81
#LOC in 2019 583, 237 18.5 Million 31.76
#LOCin2019
#LOCin2003

3.11 4.98 1.6

TABLE I: Evolution of source code size for the Xen hypervisor
and a Linux-based pVM. LOC stands for "Lines of Code".

mitigate them. More precisely, we focus on one of the most
popular VMM software architectures, hereafter named “pVM-
based VMMs”. In this architecture, which has some similari-
ties with a microkernel OS design, the VMM is made of two
components: the hypervisor and a privileged VM (pVM). The
hypervisor is the low-level component that is mostly in charge
of initializing the hardware and acting as a data plane, i.e.,
providing the logic needed to virtualize the underlying hard-
ware platform, except I/O devices. The pVM acts as a control
plane for the hypervisor, through a specific interface, and is
involved in all VM management operations (creation, startup,
suspension, migration . . . ). It also hosts I/O device drivers that
are involved in all I/O operations performed by user VMs (i.e.,
regular VMs) on para-virtual devices. The pVM is typically
based on a standard guest OS (e.g., Linux) hosting a set of
control-plane daemons. This pVM-based design is popular and
used in production-grade, mainstream virtualization platforms
(for example, Xen, Microsoft Hyper-V and some versions of
VMware ESX) for several important reasons, including the
following ones: (i) it simplifies the development, debugging
and customization of the control plane [1], (ii) it provides
isolation boundaries to contain the impact of faults within the
control plane or the I/O path [2], (iii) it offers flexibility for
the choice of the OS hosting the control plane (which matters
for considerations like code footprint, security features, and
available drivers for physical devices) [3], (iv) it provides a
data plane with a smaller attack surface than a full-blown
operating system like Linux.

In such a pVM-based VMM design, the crash of the pVM
leads to the following severe consequences: (1) the inability to
connect to the physical server, (2) the inability to manage user
VMs, and (3) the interruption of the networked applications
running in user VMs. Besides, the faults within the pVM are
more frequent than in the hypervisor itself because the code
base of the former is very large (see Table I), thus likely to

1



be more bug-prone than the latter.
While the reliability of the pVM is of primary and growing

importance, it has received relatively little attention from the
research community. In TFD-Xen, Jo et al. [4] focused on
the reliability of the network drivers inside the pVM of a
Xen-based system. However, this work does not take into
account the critical dependencies of these drivers with other
pVM services (see §II). In the Xoar project, Colp et al.
[5] proposed to periodically refresh each service of the Xen
pVM using a micro-reboot mechanism. This approach, which
was initially designed by its authors as a defense mechanism
against (stepping-stone) security attacks, can also improve the
resilience of a system against faults, by combining preventive
rejuvenation and automatic restart of software components.
However, periodic refreshes incur unacceptable performance
degradation for I/O-sensitive user workloads. For example,
on the TailBench benchmark suite [6], we observed a major
degradation of the 95th-percentile latencies, up to 1300x
(see §II-B). Due to all these limitations, the current solution
adopted by data center operators is full server replication
(VMM and VMs) at the physical level, like, for example, in
VMware vSphere Fault Tolerance [7]. The main limitation of
this approach is the fact that it doubles the number of servers
in the data center.

In this paper, we assume that the hypervisor is reliable
(e.g., thanks to state-of-the-art techniques [8]–[10]) and we
propose a holistic and efficient design to improve in-place
the resilience of a pVM against crashes and data corruption.
We choose the Xen VMM [1], [11] as a case study for our
prototype implementation, given that this is the most popular
pVM-based virtualization platform2. In Xen’s jargon, the pVM
is called “dom0” (or “Domain0”). Our approach is built
following three principles. The first principle is disaggregation
(borrowed from Xoar [5]), meaning that each pVM service
is launched in an isolated unikernel [12], thus avoiding the
single point of failure nature of the vanilla pVM design.
The second principle is specialization, meaning that each
unikernel embeds a FT solution that is specifically chosen
for the pVM service that it hosts. The third principle is pro-
activity, meaning that each FT solution implements an active
feedback loop to quickly detect and repair faults. The latter
two principles are in opposition to the Xoar design, which
systematically/unconditionally applies the same FT approach
(refresh) to all the pVM components.

In respect to the disaggregation principle, we organize
Xen’s dom0 in four unikernel (uk) types namely XenStore_uk,
net_uk, disk_uk, and tool_uk. XenStore_uk hosts XenStore,
which is a database with a hierarchical namespace storing
VM configurations and state information. net_uk hosts both the
real and the para-virtualized network drivers. Its FT solution is
based on the shadow driver approach [13]. disk_uk is similar to
net_uk for storage devices, and tool_uk hosts VM management

2Xen is used by major hyperscale cloud providers, such as AWS, Tencent,
Alibaba Cloud, Oracle Cloud, and IBM Cloud. Xen is also supported by most
software stacks used in private clouds of various scales like Citrix XenServer,
Nutanix Acropolis, OpenStack and Apache Cloudstack.

tools. XenStore is the only component that is subject to data
corruption since it is the only one that is stateful. According
to the specialization and the pro-activity principles, the FT so-
lution of each component is as follows: XenStore_uk is repli-
cated (for handling crashes) and it implements a sanity check
solution for data corruption detection; net_uk and disk_uk
implement a shadow driver FT approach; tool_uk redesigns
the VM migration logic for improved resilience. Our solution
also includes a global feedback loop implemented inside the
hypervisor (which is assumed to be resilient) for managing
cascading failures and total dom0 crashes. Cascading failures
are related to the relationships between dom0 services. For
instance, the failure of XenStore generally causes the failure
of all the other components.

In summary, the paper makes the following three main
contributions. First, we present for the first time a holistic FT
solution for the pVM. Second, we implement a functioning
prototype in Xen. The source code of our prototype is publicly
available3. Third, we demonstrate the effectiveness of our
solution. To this end, we first evaluate the FT solution of
each pVM component individually. Then, we evaluate the
global solution while injecting faults on several components
at the same time. The evaluation results show that the impact
of our solution on user VMs when they run performance-
critical applications such as those from the TailBench suite is
acceptable in comparison to state-of-the-art solutions (Xoar [5]
and TFD-Xen [4]). For instance, we achieve a 12.7% increase
for 95th-percentile tail latencies; in comparison, the increase
caused by Xoar is of 12999%.

The rest of the article is organized as follows. Section
II presents the background and the motivations. Section III
presents the general overview of our solution and the fault
model that we consider. Section IV presents the implementa-
tion of our solution for each service of Xen’s pVM. Section V
presents the evaluation results. Section VI discusses the related
works. Section VII concludes the paper.

Fig. 1: Overall architecture of a Xen-based virtualization
platform. The dom0 VM corresponds to the pVM.

II. BACKGROUND AND MOTIVATION

A. Xen virtualization platform

Figure 1 presents the architecture of a physical server viru-
alized with Xen. It comprises three component types: domUs

3https://github.com/r-vmm/R-VMM

2

https://github.com/r-vmm/R-VMM


VM manangement operations
(impact the cloud provider)

Application operations
(impact cloud users)

Start Stop Migrate Update Net
I/O

Disk
I/O

CPU/
Mem

Tools A A A A
Net A S
Disk A S
XS A A A A S S S

TABLE II: Impact of the failure of the different dom0
services (xl tools, network/disk drivers, XenStore) on the
VM management operations and on the applications (in user
VMs). An “A” mark indicates that the failure always leads
to unavailability while a “S” mark denotes correlated failures
that occur only in specific situations.

(user VMs), Xen (the hypervisor), and dom0 (the pVM).
domUs are VMs booked and owned by datacenter users. The
combination of Xen and dom0 forms the VMM. Xen runs
directly atop the hardware, and is in charge of hardware
initialization, resource allocation (except for I/O devices) and
isolation between VMs. Besides, dom0 is a Linux system that
hosts an important portion of the local virtualization system
services, namely (i) the domU life-cycle administration tool
(xl), (ii) XenStore, and (iii) I/O device drivers.

The xl tool stack [14] provides domU startup, shutdown,
migration, checkpointing and dynamic resource adjustment
(e.g., CPU hotplug). XenStore is a daemon implementing a
metadata storage service shared between VMs, device drivers
and Xen. It is meant for configuration and status information
rather than for large data transfers. Each domain gets its own
path in the store, which is somewhat similar in spirit to the
Linux procfs subsystem. When values are changed in the
store, the appropriate components are notified. Concerning
I/0 devices, dom0 hosts their drivers and implements their
multiplexing, as follows. Along with I/O drivers, dom0 embeds
proxies (called backend drivers) that relay incoming events
from the physical driver to a domU and outgoing requests
from a domU to the physical driver. Each domU runs a
pseudo-driver (called frontend) allowing to send/receive re-
quests to/from the domU-assigned backend.

B. Motivations

The architecture presented in the previous subsection in-
cludes two points of failure: the Xen hypervisor and the
dom0 pVM. This paper focuses on dom0 fault tolerance (FT).
Table II summarizes the negative impact of the failure of
dom0 with respect to each service that it provides. We can
see that both cloud management operations (VM start, stop,
migrate, update) and end user applications can be impacted by
a dom0 failure. Concerning the former, they can no longer be
invoked in case of dom0 failure. Regarding user applications,
those which involve I/O devices become unreachable in case
of dom0 failure. The table also shows that XenStore (XS) is
the most critical dom0 service because its failure impacts all
other services as well as user applications.

Failures within dom0 are likely to occur since it is based
on Linux, whose code is known to contain bugs due to its

monolithic design, large TCB (trusted computing base) and
ever-increasing feature set. We analyzed xen.markmail.org, a
Web site that aggregates messages from fourteen Xen related
mailing lists since October 2003. At the time of writing this
paper, we found 243 distinct message subjects including the
terms crash, hang, freeze, oops and panic4. After manual
inspection of each of the 243 messages, we discarded 82
of them because they were not talking about faults. 57%
of the remaining messages were related to failures of dom0
components and 43% to the hypervisor. By zooming on dom0
faults, we observed that 66% were related to device drivers,
26% to the tool stack, and 8% to XenStore. From this analysis,
two conclusions can be drawn: (1) cloud sysadmins report
dom0 failures; (2) such failures are linked to all dom0 services.

To the best of our knowledge, the only existing exhaustive
solution against dom0 failures (without resorting to physical
server replication) is the one proposed in the Xoar project [5].
This approach was initially designed against security attacks,
but also provides fault tolerance benefits. It has two main
aspects. First, dom0 is disaggregated in several unikernels in
order to confine each service failure. Second, each service
is periodically restarted (“refreshed”) using a fresh binary.
The critical parameter in such an approach is the refresh
frequency. On the one hand, if it is large (tens of seconds),
then components that are impacted by a dom0 failure will
experience this failure for a long time. On the other hand,
if the refresh period is too short (e.g., one second) then
failures are handled relatively quickly, but at the expense of
significant performance degradation for the user applications.
This dilemma has been partially acknowledged by the authors
of Xoar in their paper [5]: in the case of a short refresh
period (1 second), they measured a 3.5 degradation ratio
for the throughput and latency of a Web server benchmark.
We also assessed this limitation by running latency-sensitive
applications from the TailBench suite [6] in a domU while
varying the refresh period of its assigned network backend
unikernel (the details of the testbed are provided in §V).
Figure 2 reports for each benchmark the ratio of the mean
and (95th and 99th percentile) tail latencies over the execution
of the same benchmark without refresh. We can see that
self refresh can incur a 5x-2000x degradation for the mean
latency, 5x-1300x for the 95th percentile, and 5x-1200x for the
99th percentile. We also notice that the degradation remains
significant even with a large refresh period (60 seconds).
These values are too high, unacceptable for cloud users. This
strengthens the need for a better approach for dom0 FT.

III. GENERAL OVERVIEW

This section presents the basic idea behind our dom0 FT
solution and the general fault model that we target.

A. Basic idea

Our solution, named PpVMM (Phoenix pVM-based VMM),
is based on three main principles. The first principle is disag-

4We used the search string “crash hang freeze oops panic -type=checkins”.
The option “type=checkins” excludes commit messages.

3



0

500

1000

1500

2000

2500

1 5 10 15 30 45 60

R
at

io
to

ba
se

lin
e

Refresh period (s)

xapian

mean
95p-tail
99p-tail

1

2

3

4

5

6

7

8

1 5 10 15 30 45 60

R
at

io
to

ba
se

lin
e

Refresh period (s)

sphinx

mean
95p-tail
99p-tail

50

100

150

200

250

300

350

400

1 5 10 15 30 45 60

R
at

io
to

ba
se

lin
e

Refresh period (s)

moses

mean
95p-tail
99p-tail

2

4

6

8

10

12

14

16

18

20

1 5 10 15 30 45 60

R
at

io
to

ba
se

lin
e

Refresh period (s)

masstree

mean
95p-tail
99p-tail

0

200

400

600

800

1000

1200

1400

1 5 10 15 30 45 60

R
at

io
to

ba
se

lin
e

Refresh period (s)

img-dnn

mean
95p-tail
99p-tail

Fig. 2: Mean and tail latencies for TailBench applications when self-refresh is enabled for the (disaggregated) pVM components.
The results (lower is better) are normalized w.r.t. a baseline without self-refresh for the same metrics.

gregation (borrowed from Xoar [5]), meaning that each dom0
service is launched in an isolated unikernel, thus avoiding the
single point of failure nature of the vanilla centralized dom0
design. The second principle is specialization, meaning that
each unikernel embeds a FT solution that is specifically chosen
for the dom0 service that it hosts. The third principle is pro-
activity, meaning that each FT solution implements an active
feedback loop to quickly detect and repair faults.

Driven by these three principles, we propose the general ar-
chitecture of our FT dom0 in Figure 3. The latter is interpreted
as follows. dom0 is disaggregated in four unikernels namely
XenStore_uk, net_uk, disk_uk, and tool_uk. Some unikernels
(e.g., device driver unikernels) are made of sub-components.
We equip each unikernel and each sub-component with a
feedback loop that includes fault detection (probes) and repair
(actuators) agents. Both probes and actuators are implemented
outside the target component.We associate our (local) dom0
FT solution with the (distributed) data center management
system (e.g., OpenStack Nova) because the repair of some
failures may require a global point of view. For instance, the
failure of a VM creation request due to a lack of resources on
the server may require to retry the request on another server.
This decision can only be taken by the data center management
system. Therefore, each time a failure occurs, a first step repair
solution provided by our system is performed locally on the
actual machine. Then, if necessary, a notification is sent to the
data center management system.

A global feedback loop coordinates per-component feed-
back loops in order to handle concurrent failures. The latter
requires a certain repair order. For instance, the failure of Xen-
Store_uk is likely to cause the failure of other unikernels since
XenStore acts as a storage backend for their configuration
metadata. Therefore, XenStore_uk repair should be launched
first, before the repair of the other unikernels. We implement
the global feedback loop inside the hypervisor, which is the
only component that we assume to be safe.

Fig. 3: Overall architecture of our FT pVM design.

B. General fault model

This section presents in a generic way the pVM (dom0) fault
model that we target. Additional details are given in the next
sections for each component. In the disaggregated architecture
on which we build our FT solution, the dom0 components
can be classified into two types: stateful (XenStore_uk) and
stateless (net_uk, disk_uk, and tool_uk). We assume that all
components may suffer from crash faults and that stateful
components can also suffer from data corruption faults. Crash
faults may happen in situations in which a component is
abruptly terminated (e.g., due to invalid memory access) or
hangs (e.g., due to a deadlock/livelock problem). These situa-
tions can make a component either unavailable, unreachable,
or unresponsive when solicited. For stateful components, we
are also interested in data corruption issues, that may stem
from various causes (e.g., an inconsistency introduced by
a software crash, a sporadic bug, or hardware “bit rot”).
Furthermore, our fault model encompasses situations in which
several components are simultaneously in a failed state (either
due to correlated/cascading failures) or due to independent
issues. Besides, our work assumes that the code and data
within the hypervisor component (i.e., Xen) are reliable or,
more reasonably, that potential reliability issues within the
hypervisor are addressed with state-of-the-art fault tolerance
techniques such as ReHype [8] (discussed in §VI). Our design

4



net_uk disk_uk tool_uk xenstore_uk
# Base LOCs 193k 350k 270k 8k

# Lines + 193 87 8 27

TABLE III: Lines of codes added to each unikernel codebase
for fault tolerance.

requires small and localized modifications (318 LOCs) to
the Xen hypervisor; we believe that they do not introduce
significant weaknesses in terms of reliability.

IV. IMPLEMENTATION

To build our disaggregated dom0 architecture, we leverage
the unikernels developed by the Xen project (Mini-OS and
MirageOS). The motivation for these unikernels in the context
of the Xen project is to contain the impact of faults in distinct
pVM components. However, our contribution goes beyond
the mere disaggregation of the pVM: we explain how to
support fine-grained fault detection and recovery for each
pVM component. This section presents the implementation
details of our fault tolerance (FT) solution for each dom0
unikernel, except (due to lack of space) for disk_uk, which
is relatively similar to net_uk. For each unikernel, we first
present the specific fault model that we target followed by the
FT solution (Table III presents a summary of the code size
for each unikernel (existing code + modifications). Finally, the
section presents the global feedback loop (which coordinates
the recovery of multiple components) and discusses scheduling
optimizations.

Fig. 4: Replication-based FT solution for XenStore.

A. XenStore_uk FT solution

XenStore is a critical metadata storage service, on which
other dom0 services rely. XenStore_uk runs within the
MirageOS unikernel [15].

Fault model. We consider two types of faults. The first
type is unavailability, meaning that XenStore is unable to
handle incoming requests, due to bugs (hangs/crashes). The
second type is silent data corruption; such issues may be
caused by bit flips, caused by defective hardware or possibly
malicious VMs (e.g., RowHammer attacks [16], [17]).

FT solution. We use state machine replication and
sanity checks to handle unavailability and data corruption
respectively. The overall architecture is depicted in Figure 4.
Note that the memory footprint of a XenStore database is
typically very small (lower than 1MB for 40 VMs).
Unavailability. We organize XenStore into several replicas
(e.g., three in our default setup). Each replica runs in a
dedicated unikernel based on MirageOS [15]. The set of
replicas is managed by a coordinator running in a dedicated
unikernel. Notice that the coordinator (noted Cm) is also
replicated (the replicas are noted Cr) for FT. Cm chooses a
XenStore replica to play the role of the master (noted XSm).
Let us note the other XenStore replicas XSr. Cm is the
XenStore entry point for requests sent by XenStore clients.
We enforce this by modifying the xs_talkv function of the
XenStore client library, used by the other components. Cm

forwards read requests only to XSm, while write requests
are broadcast to all replicas.

We implement this state machine replication strategy using
the etcd coordination system [18] deployed in a MirageOS
unikernel. We choose etcd because of its well-established
robustness, and its relatively lightweight resource requirements
(compared to other coordination systems such as ZooKeeper
[19]). Also, etcd has built-in support for high availability
through strongly-consistent replication based on the Raft con-
sensus algorithm [20]. In the rest of this section we use the
term etcd to refer to Cm and the Cr replicas.

We improve etcd to provide both failure detection and repair
strategies, as follows. etcd is augmented with a heartbeat (HB)
monitor for each XenStore replica. When a replica does not
answer to a heartbeat, etcd pro-actively replaces the replica
with a fresh version, whose state is obtained from another
alive uncorrupted XenStore replica. This recovery process does
not interrupt request handling by other replicas. In case of
the unavailability of XSm, etcd elects another master and
forwards to it the in-progress requests that were assigned to
the crashed master. Cm exchanges heartbeat messages with
the hypervisor so that the latter can detect the simultaneous
crashing of the former and the Cr replicas. In fact, the failure
of one coordinator instance can be handled by the other
instances without the intervention of the hypervisor. The latter
intervenes only when all instances crash at the same time.

Besides, we have modified the communication mechanism
used between etcd and the other components. Instead of lever-
aging its default communication interface based on the HTTP
protocol, we rely on virtual IRQs and shared memory. The
motivation is twofold. First, this reduces the communication
overheads on the critical path. Second, the utilization of HTTP
would involve net_uk in the failure handling path of XenStore,
thus adding a dependence of the latter w.r.t. the former.
This dependency would make it difficult to handle cascading
failures since net_uk already relies on XenStore.

In order to provide a highly available metadata storage
service, an alternative design could consist in using the etcd in-
stances as a complete replacement for the XenStore instances.
This approach would reduce the number of unikernel instances

5



and some communication steps between the pVM components.
We have actually tried to implement this approach but the
achieved performance was significantly poorer: we observed
request latencies that were higher by up to several orders of
magnitude (microseconds vs. milliseconds). Indeed, XenStore
and etcd are datastores with a fairly similar data model but
their implementations are optimized for different contexts
(local machine interactions versus distributed systems). In ad-
dition, the design that we have chosen helps limiting the mod-
ifications to be made w.r.t. the implementation of the vanilla
pVM components. In particular, this allows benefiting from
new features and performance optimizations integrated into
the vanilla XenStore codebase, e.g., regarding data branching
and transactions.
Data corruption. This type of faults is handled by a sanity
check approach implemented on all XenStore replicas, as
described below. First, we make the following assumption:
for a given logical piece of information that is replicated
into several physical copies, we assume that there is at most
one corrupted copy. Each etcd instance stores a hash of the
content of the latest known uncorrupted XenStore database
state. Besides, a sanity check agent (called checker) runs as a
transparent proxy in each XenStore replica. Upon every write
request sent to the XenStore service, each checker computes
a new hash, which is forwarded to the etcd coordinator. If the
hashes sent by all the replicas match, then this new value is
used to update the hash stored by all the etcd instances. Upon
the reception of a read request, the master XenStore replica
computes a hash of its current database state and compares
it against the hash sent by the coordinator. If they do not
match, a distributed recovery protocol is run between the etcd
coordinators to determine if the corrupted hash stems from
the coordinator or the XenStore master replica. In the former
case, the hash of the coordinator is replaced by the correct
value. In the latter case, the XenStore replica is considered
faulty and the etcd coordinator triggers the above-mentioned
recovery process.
Total XenStore failure. In the worse case, all XenStore and/or
etcd components can crash at the same time. In our solution,
this situation is detected and handled by the hypervisor via
the heartbeat mechanism mentioned above. The hypervisor
relaunches the impacted component according to a dependency
graph (see §IV-D). However, an additional issue is the need
to retrieve the state of the XenStore database. In order to
tolerate such a scenario without relying on the availability
of the disk_uk (to retrieve a persistent copy of the database
state), we rely on the hypervisor to store additional copies of
the XenStore database and the corresponding hashes. More
precisely, the hypervisor hosts an in-memory backup copy for
the database and hash stored by each replica, and each replica
is in charge of updating its backup copy.

B. net_uk FT solution

Based on the Mini-OS unikernel [21], the net_uk component
embeds the NIC driver and, in accordance with the split
driver model, it proxies incoming and outgoing network I/O

requests to/from user VMs. To this end, net_uk also runs a
virtual driver called netback that interacts with a pseudo NIC
driver called netfront inside the user VM. The interactions
between netback and netfront correspond to a bidirectional
producer-consumer pattern and are implemented via a ring
buffer of shared memory pages and virtual IRQs. Overall,
net_uk can be seen as a composite component encapsulating
the NIC driver and the netback.

Fault model. We are interested in mitigating the unavailability
of net_uk. The latter can be caused by a crash of the NIC
driver, of the netback or of the whole unikernel. We assume
that a fault in the NIC driver or the netback does not corrupt
the low-level data structures of the kernel. This is a viable
assumption as we can run the NIC driver in an isolated
environment similar to Nooks [22] or LXDs [23].

FT solution. Our approach aims at detecting failures at
two levels: a coarse-grained level when the whole unikernel
fails and a fine-grained level for the NIC driver and netback
failures. Before presenting the details of our solution, we first
provide a brief background on the design of the I/O path,
using the reception of a new packet as an example.

Once the NIC reports the arrival of a packet, a hardware
interrupt is raised and trapped inside the hypervisor. The
latter forwards the interrupt (as a virtual interrupt) to net_uk.
The handler of that virtual interrupt is then scheduled inside
net_uk. In general, the interrupt handler is organized in two
parts namely top half (TH) and bottom half (BH). The top
half masks off interrupt generation on the NIC and generates
a softirq whose handler is the bottom half. The latter registers
a NAPI (“New API”) function, aimed at polling for additional
incoming network packets. The maximum number of packets
that can be pooled using this mechanism is controlled via
a budget and a weight parameter. Upon its completion, the
bottom half unmasks interrupt generation by the NIC. Overall,
this design allows limiting the overhead of network interrupts.

To handle NIC driver failures, we leverage the shadow
driver approach introduced by Swift et al. [13]. The latter
was proposed for bare-metal systems. We adapt it for a Xen
virtualized environment as follows. The original shadow driver
approach states that each (physical) driver to be made fault
tolerant should be associated a with shadow driver, interposed
between the former and the kernel. This way, a failure of the
target driver can be masked by its shadow driver, which will
mimic the former during the recovery period. The shadow
driver can work in two modes: passive and active. In passive
mode, it simply monitors the flow of incoming and completed
requests between the kernel and the target driver. Upon failure
of the target driver, the shadow driver switches to the active
mode: it triggers the restart of the target driver (and intercepts
the calls made to the kernel), and it buffers the incoming
requests from the kernel to the target driver (which will be
forwarded after the recovery process).

In our specific virtualized context, we do not create a
shadow driver for each net_uk component. Instead, we con-

6



sider an improved version of the netback driver as the shadow
driver for both itself and the NIC driver (see Fig. 5.b). In
this way, we reduce the number of shadow drivers and, as
a consequence, the net_uk code base (complexity). When
a bottom half handler is scheduled, a signal is sent to the
hypervisor, which records the corresponding timestamp to.
Once the execution of the bottom half ends, another signal
is sent to the hypervisor to notify completion (see Fig. 5.a).
If no completion signal is received by the hypervisor after
to+ tmax, where tmax is the estimated bottom half maximum
completion time, the hypervisor considers that the NIC driver
has failed, and triggers the recovery of the driver (using
existing techniques [13]), as shown in Fig. 5.b. The tuning
of tmax depends on budget and weight values (see above) and
is empirically determined. In our testbed, the values used for
budget and weight are 300 and 64 respectively, and tmax is
about 4s.

Fig. 5: net_uk, in which the shadow driver (netback) works
either in passive (a) or in active (b) mode. In the former
mode (no NIC driver failure), the hypervisor records the
bottom half handler (BH) starting timestamp to and awaits a
completion signal before to + tmax, otherwise triggers NIC
driver (ND) reload. In active mode (ND failure has been
detected), the netback buffers requests and acks the netfront
upon ND recovery.

Regarding the failure of the netback, the hypervisor moni-
tors the shared ring buffer producer and consumer counters
between a netback and its corresponding frontend. If the
netback’s private ring counters remain stuck while the shared
ring counters keep evolving, this lag is considered as a hint
revealing the failure of the netback. Hence, the netback is
reloaded (unregistered then registered). Meanwhile, its fron-
tend’s device attribute otherend->state value switches
to XenbusStateReconfigured while the netback un-
dergoes repair. Once the repair is complete, the latter value
switches back to XenbusStateConnected and proceeds
with the exchange of I/O requests with the netback.

Regarding the failure of the entire unikernel, we adopt the
same approach as TFD-Xen [4]: the hypervisor monitors the
sum of the counters of the shared ring buffer used by all
netbacks and their corresponding netfront drivers to detect a
lag between the producer and the consumer counter. However,
this approach alone cannot detect net_uk hanging when it is
not used by any user VM. Therefore, we combine it with
a heartbeat mechanism, also controlled by the hypervisor. A

reboot of the net_uk VM is triggered when any of the two
above-described detection techniques raises an alarm.

C. tool_uk FT solution

The tool_uk unikernel embeds the Xen toolstack for
VM administration tasks (creation, migration, etc.). We
use XSM (Xen Security Modules [24]) to introduce a new
role (tooldom) which has fewer privileges than the original
monolithic dom0 but enough for administrative services.
It runs in an enriched version of Mini-OS [21], a very
lightweight unikernel, part of the Xen project.

Fault model. We strive to mitigate faults occurring
during administrative operations. Apart from live migration
(discussed below), the fault tolerance requirements for all
the other administration tasks are already fully handled
either locally, by the vanilla toolstack implementation, or
globally, by the data center management system (e.g. Nova in
OpenStack). In these cases, our solution provides nonetheless
fast and reliable notifications regarding the failures of the
local toolstack. We now describe the specific problem of
resilient live migration. During the final phase of a live
migration operation for a VM5, the suspended state of the
migrated VM is transferred to the destination host and upon
reception on the latter, the VM is resumed. If a fault occurs
during that phase, the migration process halts and leaves a
corrupted state of the VM on the destination machine and a
suspended VM on the sender machine.

FT solution. We consider that a failure has occurred
during the migration process if the sender machine does
not receive (within a timeout interval) the acknowledgement
message from the destination machine, which validates the
end of the operation. As other unikernels in our solution,
faults resulting in the crash/hang of the entire tool_uk are
detected with a heartbeat mechanism and trigger the restart
of the tool_uk instance. In both cases (partial or complete
failure of the component), the repair operation for the failed
migration is quite simple and consists in (i) first discarding
the state of the suspended VM on the destination machine,
(ii) destroying the VM on the destination machine, and (iii)
resuming the original VM instance on the sender machine.

D. Global feedback loop

Our solution includes a global feedback loop for handling
concurrent failures of multiple pVM components (and poten-
tially all of them). Such a situation may or may not be due
to a cascading failure. To handle such a situation in the most
efficient way, the hypervisor embeds a graph thats indicates
the dependencies between the different unikernels, which are
represented in Figure 6. When a unikernel fails, the hypervisor
starts the recovery process only when all unikernels used by
the former are known to be healthy and reachable.

5Xen adopts a pre-copy iterative strategy for live migration [25].

7



Fig. 6: Relationships between the different components of the
disaggregated pVM.

E. Scheduling optimizations

The design that we have described so far, with the dis-
aggregation of the pVM services into independent unikernel
VMs and the usage of heartbeats to detect their failures, raises
some challenges with respect to CPU scheduling. Indeed,
it is non-trivial to ensure that these VMs are appropriately
scheduled. On the one hand, due to the number of VMs
resulting from the disaggregation, dedicating one (or several)
distinct physical CPU core(s) to each unikernel VM would
result in significant resource waste (overprovisioning). On the
other hand, if such VMs are not scheduled frequently enough,
they may not be able to send their heartbeats on time to the
hypervisor (leading to false positives, and unneeded repair
procedures), or, as a workaround, this may require to set
longer timeouts (leading to slow detection of actual failures).
In order to overcome the above-described issues, we slightly
modify the CPU scheduler of the hypervisor. At creation
time, each service VM is marked with a special flag and
the hypervisor CPU scheduler guarantees that such VMs are
frequently scheduled and sends a ping request to a unikernel
VM before switching to it. Each service VM is granted a
time slice of 5ms for heartbeat response. As an additional
optimization, the scheduling algorithm is modified to skip the
allocation of a CPU time slice to a unikernel VM if the latter
has recently (in our setup, within the last 15ms) issued an
“implicit” heartbeat (for example, in the case of the net_uk
VM, a recent and successful interaction with the hypervisor for
sending or receiving a packet is a form of implicit heartbeat).
This avoids the cost of context switches to a unikernel VM
solely for a ping-ack exchange when there are hints that this
VM is alive.

V. EVALUATION

This section presents the evaluation results of our prototype.
Evaluation methodology and goals. We evaluate both the
robustness and the reactivity of our solution in fault situations.
We first evaluate each dom0 service FT solution individually,
meaning that a single failure (in a single component) is
injected at a time in the system. Then, we consider the failure

of several services at the same time. For each experiment, we
consider a challenging situation in which both dom0 services
and user VMs are highly solicited. Crash failures are emulated
by killing the target component or unikernel. In order to
simulate data corruption (in the case of XenStore_uk), we
issue a request that overwrites a path (key-value pair) within
the data store.

We are interested in the following metrics: (1) the overhead
of our solution on the performance of dom0 services; (2) the
overhead of our solution on the performance of user VMs;
(3) the failure detection time; (4) the failure recovery time;
(5) the impact of failures on dom0 services; (6) the impact of
failures on user VMs. The overhead evaluation is performed
on fault-free situations. We compare our solution with
vanilla Xen 4.12.1 (which provides almost no fault tolerance
guarantees against pVM failures), Xoar [5] (periodic refresh),
and TFD-Xen [4] (which only handles net_uk failures). For a
meaningful comparison, we re-implemented the two previous
systems in the (more recent) Xen version that we use for
our solution. For Xoar, we use a component refresh period
of 1 second, and the different components are refreshed
sequentially (not simultaneously) in order to avoid pathologic
behaviors.

Benchmarks. User VMs run applications from the TailBench
benchmark suite [6]. The latter is composed of 8 latency-
sensitive (I/O) applications that span a wide range of latency
requirements and domains and a harness that implements a
robust and statistically-sound load-testing methodology. It
performs enough runs to achieve 95% confidence intervals
≤ 3% on all runs. We use the client-server mode. The client
and the server VMs run on distinct physical machines. The
server VM is launched on the system under test. We left out
3 applications from the TailBench suite, namely Shore, Silo
and Specjbb. Indeed, the two former are optimized to run on
machines with solid state drives (whereas our testbed machine
is equipped with hard disk drives), and Specjbb cannot run in
client-server mode. In addition, we also measure the request
throughput sustained by the Apache HTTP server (running
in a user VM) with an input workload generated by the AB
(ApacheBench) benchmark [26] (using 10,000 requests and a
concurrency level of 10).

Testbed. All experiments are carried out on a 48-core
PowerEdge R185 machine with AMD Opteron 6344
processors and 64 GB of memory. This is a four-socket
NUMA machine, with 2 NUMA nodes per socket, 6 cores
and 8 GB memory per NUMA node.

The dom0 components use two dedicated sockets and
the user VMs are run on the two other sockets. Providing
dedicated resources to the pVM is in line with common
practices used in production [27] in order to avoid interfer-
ence. Besides, we choose to allocate a substantial amount of
resources to the dom0 in order to evaluate more clearly the
intrinsic overheads of our approach (rather than side effects
of potential resource contention). We use Xen 4.10.0 and

8



the dom0 runs Ubuntu 12.04.5 LTS with Linux kernel 5.0.8.
The NIC is a Broadcom Corporation NetXtreme II BCM5709
Gigabit Ethernet interface. The driver is bnx2. The machines
are linked using a 1Gb/s Ethernet switch. Unless indicated
otherwise, user VMs run Ubuntu 16.04 with Linux Kernel
5.0.8, configured with 16 virtual CPUs (vCPUs) and 16GB
of memory. Concerning unikernels composing dom0, each is
configured with 1 vCPU and 1 GB of memory (128MB for
the XenStore instances). The real memory footprint during our
evaluations is ≈500MB for every unikernel (≈100MB for each
Xenstore instance). For fault-free runs, compared to vanilla
Xen, we achieve 1-3% slowdown for I/O-intensive applications
(disk or network). These results are similar to those reported
with Xoar (original version [5] and our reimplementation): the
intrinsic performance overhead of disaggregation is low.

A. XenStore_uks

Recall that, in the fault model that we consider, XenStore
is subject to both unavailability and data corruption faults.
XenStore is highly solicited and plays a critical role during
VM administration tasks. We use VM creation operations to
evaluate XenStore, because this type of operation is one of the
most latency-sensitive and also involves Xenstore the most6.

1) Robustness: We launch a VM creation operation and
inject a crash failure into the master XenStore replica (recall
that we use a total of 3 XenStore instances) during the phase
where XenStore is the most solicited.We repeat the experiment
ten times and we report mean values. The observed results are
as follows.

We observe that some VM creations fail with both vanilla
Xen and Xoar. The latter, after the refresh period, is not
able to replay the VM creation request because it has not
been recorded. Besides, Xoar takes 1 second to detect the
failure. Its recovery time is 22ms (a reboot of XenStore_uk).
In contrast, using our solution, all VM creation operations
complete successfully. Our solution takes 1.54ms and 5.04ms
to detect crashing and data corruption faults respectively. The
recovery process for crashing and data corruption is 25.54ms
(starting a new Xenstore_uk replica and synchronizing its
database). The overall corresponding VM creation time is
about 5.349s and 5.353s respectively for the two failure types,
compared to 5.346s when no fault is injected.

2) Overhead: We sequentially execute ten VM creation
operations (without faults). The mean VM creation time (until
the full boot of the VM’s kernel) for vanilla Xen, Xoar, and
our solution (PpVMM ) is respectively 4.445sec, 6.741sec,
and 5.346sec. Our solution incurs about 20.27% (≈ 900ms)
overhead. This is due to the fact that a VM creation operation
generates mostly write requests (89% of the requests are
writes), which require synchronization between all XenStore
replicas. Read requests do not require synchronization. Fig.
7 reports mean, 95th- and 99th-percentile latencies for read

6A VM creation request requires 53 XenStore requests, whereas VM
destruction, VM migration and vCPU hotplug operations respectively require
47, 24, and 12 requests.

and write requests, confirming the above analysis. The over-
head incurred by our solution is significantly lower than the
overhead of Xoar, which is about 51.65% (≈ 2.3s).

 20

 40

 60

 80

 100

 120

 140

 160

Mean 95th 99th

1611,18 27x10
3

30x10
3

Xenstore Read Latencies

Xen PpVMM Xoar
 

 50

 100

 150

 200

 250

Mean 95th 99th

1719,06 27x10
3

31x10
3

Xenstore Write Latencies

Xen PpVMM Xoar
 

Fig. 7: Mean, 95th and 99th-percentile latencies of XenStore
requests during 10 VM creation operations. The reported
latencies are in µs.

B. net_uk

For these experiments, we run independently each Tail-
Bench application inside the user VM and we measure how it
is impacted by crash failures.

1) Robustness: Recall that our solution enhances net_uk
with several FT feedback loops in order to detect failures at
different granularities: the unavailability of the subcomponents
(NIC driver and netback) and the unavailability of the entire
net_uk. Here, we only evaluate the robustness of our system
facing NIC driver crashes because it allows us, through the
same experiment, to compare fine-grained (FG) and coarse-
grained (CG) FT solutions. We inject a fault in the NIC driver
at the middle of the execution of the benchmark. Table IV and
Table V present the results. We do not interpret Xoar results
here (already discussed in §II-B). Besides, we do not show
performance results for vanilla Xen because it is unable to
achieve application completion in case of a net_uk failure.

We can see that the fine-grained solution allows quick de-
tection compared to coarse-grained solutions (ours and TFD-
Xen): up to a 3.6x difference for detection and 1.4x for repair
times (compared to our coarse-grained approach). TFD-Xen is
faster to recover because it relies on net_uk replicas linked to
backup physical NICs: instead of recovering a failed net_uk
unikernel, it switches from one net_uk to another and reconfig-
ures the bindings with the running user VMs. However, TFD-
Xen requires at least N+1 physical NICs and N+1 net_uks to
survive N net_uk faults, which results in resource waste and
limited resilience over long time intervals. Furthermore, our
fine-grained solution avoids packet losses, thanks to the use
of a shadow driver that buffers packets in case of failure. For
instance, we measured 212, 506 buffered packets for the sphinx
application. In contrast, the other solutions lead to broken
TCP sessions (caused by packet losses) that occur during
network reconfiguration (even for TFD-Xen, despite its short
recovery time). Moreover, we can see that the fine-grained FT
solution reduces the tail latency degradation compared to the
coarse-grained solution. Considering the sphinx application for
instance, the differences are respectively 24.88%, 12.88%, and
5.88% for the mean, 95th and 99th-percentile latencies.

9



DT (ms) RT (s) PL
FG FT 27.27 4.7 0
CG FT 98.2 6.9 425, 866
TFD-Xen [4] 102.1 0.8 2379
Xoar [5] 52× 103 6.9 1, 870, 921

TABLE IV: Robustness evaluation of different FT solutions
for net_uk. The failed component is the NIC driver.
DT = Fault Detection Time; RT = Fault Recovery Time; PL
= number of (outgoing) lost packets.

Regarding the throughput measurements with the AB bench-
mark, we observe the following results. TFD-Xen achieves
the best performance with 45 requests/s. The FG solution is
relatively close with 42 requests/s (7.14% gap). In contrast, the
CG approach is significantly less efficient with 29 requests/s
(55.17%) and Xoar is much worse with 9 requests/s (400%).

2) Overhead: The experiment is the same as previous with-
out fault injection. Table VI presents the results. The overhead
incurred by our solution is up to 12.4% for mean latencies, up
to 17.3% for the 95th percentiles, and up 12.3% for the 99th
percentiles. This overhead is due to periodic communication
with the hypervisor to track the driver execution state (§IV-B).
Notice that TFD-Xen [4] incurs overhead up to 2.88% for
mean latencies, 17.87% for the 95th percentiles, and up to
13.77% for the 99th percentiles.The overhead incurred by
Xoar is much higher, as already discussed in §II-B.

Regarding the throughput measurements with the AB bench-
mark, we observe the following results compared to the
vanilla Xen baseline (123 requests/s). Both TFD-Xen and our
solutions (FG and CG) exhibit a noticeable but acceptable
overhead (13.31%, 12%, and 15% respectively), whereas Xoar
incurs a more pronounced performance degradation (1130%7).

C. tool_uk

Contrary to other dom0 unikernels, tool_uk does not execute
a task permanently.It only starts a task when invoked for
performing a VM administration operation. The FT solution
does not incur overhead when there are no failures. Therefore
we only evaluate the robustness aspect. To this end, we
consider the VM live migration operation because it is the
most critical one. We run inside the user VM a Linux kernel
compilation task and inject a failure during the second stage
of the migration process, i.e., when a replica of the migrated
VM has been launched on the destination machine, and the
memory transfer is ongoing.

We observe that vanilla Xen and Xoar lead the physical
machine to an inconsistent state: the migration stops but both
the original VM (on the source machine) and its replica (on
the destination machine) keep running. This situation leads to
resource waste because the replica VM consumes resources.
Using our solution, the replica VM is stopped upon failure
detection. The detection time is 800ms.

7With a refresh period of 5s, Xoar still incurs a performance degradation
of up to 697%, significantly worse than our approach. Detailed results for this
setup are not reported due to lack of space.

D. Global failure

We also evaluate the robustness of our solution when all
the pVM components crash at the same time. We execute
the sphinx application from TailBench in a guest and we
inject faults to crash all the components simultaneously. In
this case, the hypervisor detects the global crash and restores
all unikernels in the appropriate order (see §IV-D). The whole
recovery of all unikernels takes 15.8s. Concerning application
performance, we observe a downtime of 7.85s (corresponding
to the time needed for XenStore_uk and net_uk to recover),
but the application survives and finishes its execution correctly.
We experience a huge degradation of tail latencies due to the
long downtime but we allow full and transparent functional
recovery of the user VM, unlike vanilla Xen, TFD-Xen, and
with a much lower overhead than Xoar (esp. during failure-
free execution phases).

E. Scheduling optimizations

We measure the benefits of our scheduling optimizations
(§IV-E) in terms of reactivity and CPU time used by our
unikernels. Regarding reactivity, we run the sphinx application
in a guest VM, and we trigger the crash of the net_uk. On
average, with the scheduling optimizations, we detect the
crash after 141.8ms compared to 149.5ms without, i.e., a
5.15% decrease. Besides, on a fault-free run, compared to a
standard scheduling policy, the usage of implicit heartbeats
allows a 13% decrease of the CPU time consumed by the
pVM components.

VI. RELATED WORK

pVM resilience. The projects most closely related to our
work are Xoar [5] and TFD-Xen [4]. Given that they are
described in detail and evaluated in the previous sections.

Beyond Xoar, a number of projects have investigated the
benefits of disaggregating the VMM into multiple isolated
components. Murray et al. [28] modified the original Xen
platform design in order to move the domain builder (a
security-sensitive module within the Xen toolstack running
in the pVM) to a separate virtual machine. This work did
not investigate fine-grained disaggregation nor fault tolerance.
Fraser et al. [2] revisited the design of the Xen platform
in order to support “driver domains”, i.e., the possibility to
isolate each physical device driver in a separate VM. Our
contribution builds on this work but also considers fine-grained
fault-tolerance mechanisms within driver domains, as well as
disaggregation and robustness of other pVM components.

As part of their Xen-based “resilient virtualization infras-
tructure” (RVI) [29], [30], Le and Tamir briefly discussed
how to improve the fault tolerance of the pVM and the driver
domains (dVMs). The failure of a driver domain is detected
by agents within the dVM kernel and the hypervisor, which
triggers the microreboot of the dVM. The failures of the
services hosted by the pVM (e.g., XenStore) are detected by
an agent running within the pVM. Upon such a detection,
the agent issues a hypercall to the hypervisor, and the latter
triggers a crash of the whole pVM. Hence, any failure of

10



sphinx xapian moses masstree img-dnn
mean 95th 99th mean 95th 99th mean 95th 99th mean 95th 99th mean 95th 99th

Xen 879.11 1696 1820.84 1.79 4.35 9.67 8.6 39.56 65.64 457.61 475.37 476.2 1.7 3.42 7.6
FG FT 1201.1 3100.12 3891.73 51.19 100.16 1700.31 73.21 473.21 1492.31 821.11 1891.1 2122.18 88.22 440.21 1310.88
CG FT 1500.3 3499.4 4120.91 89.9 154.9 2101.45 100.5 591.51 1833.09 1091.5 2099.1 2461.09 112.01 610.91 1503
TFD-Xen 1159.32 2908.89 3304.2 50.10 98.11 1396.21 70.31 450.22 1101.44 788.3 1381.12 1631.77 80.12 398.32 1116.81
Xoar 8100.4 11026.7 13590.3 5188.1 7238.9 8193.3 5120.4 5581.8 5909.3 10011.2 13444.5 140881.43 1491.9 4721.33 12390.4

TABLE V: Performance of TailBench applications during a net_uk failure (latencies in milliseconds). Lower is better.
The failed component is the NIC driver. The first line (“Xen”) corresponds to a fault-free baseline.

sphinx xapian moses masstree img-dnn
mean 95th 99th mean 95th 99th mean 95th 99th mean 95th 99th mean 95th 99th

Xen 879.11 1696 1820.84 1.79 4.35 9.67 8.6 39.567 65.642 457.61 475.37 476.2 1.7 3.42 7.6
FG FT 901.99 1711.11 1977.15 2.11 5.56 10.61 10.1 40.78 72.44 460.2 491.58 494.3 1.92 4.2 8.21
CG FT 900.12 1792.04 1963.5 2.12 5.96 11.05 11.9 41.3 72.12 461.09 489.03 490.12 1.9 4.3 7.98
TFD-Xen 889.91 1701.43 1911.33 2.11 4.98 10.89 9.12 40.44 73.19 461.18 489.1 493.55 1.9 4.5 8.11
Xoar 6616.44 9026.7 9590.54 3713.98 5535.77 5791.712 3019.33 3507.88 3660.65 8054.53 8642.85 8695 543.9 2526 9603

TABLE VI: Performance of TailBench applications without net_uk failure (latencies in milliseconds). Lower is better.

a given component hosted by the pVM (e.g., XenStore or
toolstack) leads to downtime and full recovery for all the other
components. In order to tolerate failures of the XenStore, its
state is replicated in a dVM, and XenStore and VM manage-
ment operations are made transactional, through the use of a
log stored in a dVM. No detail is provided on the mechanisms
used to enforce consistency and availability despite potential
concurrent failures of the pVM-hosted components and the
backup state in the dVM. Besides, the evaluation of this
approach is focused on its resilience against synthetic fault
injection. The authors of this solution do not provide any
detailed performance measurements (with or without failures),
and the code of the prototype is not available. Our work
has similarities with this approach but, (i) we apply fault
tolerance techniques at a finer granularity, (ii) we explore the
ramifications of the interdependencies between services, and
(iii) we provide a detailed performance evaluation.

Hypervisor resilience. Some works have focused on im-
proving the resilience of the hypervisor. ReHype [8], [30],
[31] is a Xen-based system, which leverages microreboot [32],
[33] techniques in order to recover from hypervisor failures,
without stopping or resetting the state of the VMs (including
the pVM and dVMs) or the underlying physical hardware.
NiLyHype [9] is a variant of ReHype, which replaces the
microreboot approach with an alternative component recov-
ery technique named microreset (i.e., resetting a software
component to a quiescent state that is likely to be valid
rather than performing a full reboot) in order to improve the
recovery latency. TinyChecker [10] uses nested virtualization
techniques (more precisely, a small, trusted hypervisor running
below a main, full-fledged hypervisor like Xen) in order to
provide resilience against crashes and state corruption in the
main hypervisor. Shi et al. [34] proposed a new modular,
“deconstructed” design for Xen in order to thwart the most
dangerous types of security attacks. Their work focuses on
a redesign of the Xen hypervisor (not the dom0 pVM). All
these works do not consider the services hosted in the pVM
(or driver domains) and are mostly orthogonal to our work.

Our contribution leverages these results (i.e., the fact that the
hypervisor can be made highly resilient) in order to improve
the fault tolerance of the pVM components.

The FTXen project [35] aims at hardening the Xen hyper-
visor layer so that it can withstand hardware failures on some
“relaxed” (i.e., fast but unreliable) CPU cores. In contrast,
our work considers the resilience of the pVM components on
current hardware, with a fault model that is homogeneous/sym-
metric with respect to CPU cores.

Some recent projects aim at supporting live reboot and/or
upgrade of VMMs without disrupting the VMs [36], [37].
These techniques are focused on code updates for improv-
ing the safety and security of the hypervisor component.
Hence, they are orthogonal to our contribution. This trend also
highlights the crucial importance of our goal: improving the
resilience of the remaining components, i.e., the pVM services.

VII. CONCLUSION

VMMs remain a key building block for cloud computing,
and many of them are based on a pVM-based design. We
have highlighted that, in this design, the pVM component
has become the main weakness in terms of fault tolerance
(compared to the bare metal hypervisor component). Besides,
the existing solutions only tackle a limited set of pVM services
(device drivers) and/or require long failure detection/recovery
times and significant performance overheads. To the best of
our knowledge, our contribution is the first to propose and
demonstrate empirically, a complete approach allowing to
achieve both high resilience (against failures of different com-
ponents and concurrent failures of interdependent services)
and low overhead. Our approach currently relies on manual
tuning of some important parameters (e.g., for failure detection
and scheduling) but, we envision that recently published works
could help manage them in a more automated and robust
way [38]. Another area for future work is the tuning and
optimization of resource allocation for disagreggrated pVM
components, which could be extended from existing tech-
niques proposed for a monolithic pVM design [27].

11



REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177,
Oct. 2003. [Online]. Available: http://tiny.cc/5xt4nz

[2] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson, “Safe Hardware Access with the Xen Virtual Machine
Monitor,” in In Proceedings of the 1st Workshop on Operating System
and Architectural Support for the on demand IT InfraStructure (OASIS),
2004.

[3] S. Spector, “Why Xen?” 2009. [Online]. Available: http://www-archive.
xenproject.org/files/Marketing/WhyXen.pdf

[4] H. Jo, H. Kim, J. Jang, J. Lee, and S. Maeng, “Transparent fault
tolerance of device drivers for virtual machines,” IEEE Transactions
on Computers, vol. 59, no. 11, pp. 1466–1479, Nov 2010.

[5] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking Up is Hard to Do: Security
and Functionality in a Commodity Hypervisor,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, ser.
SOSP ’11. New York, NY, USA: ACM, 2011, pp. 189–202. [Online].
Available: http://doi.acm.org/10.1145/2043556.2043575

[6] H. Kasture and D. Sanchez, “TailBench: a benchmark suite
and evaluation methodology for latency-critical applications,” IEEE
International Symposium on Workload Characterization (IISWC),
2016. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=7581261&isnumber=7581253

[7] D. J. Scales, M. Nelson, and G. Venkitachalam, “The Design of a
Practical System for Fault-tolerant Virtual Machines,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 4, pp. 30–39, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1899928.1899932

[8] M. Le and Y. Tamir, “ReHype: Enabling VM Survival Across
Hypervisor Failures,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’11. New York, NY, USA: ACM, 2011, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1952682.1952692

[9] D. Zhou and Y. Tamir, “Fast Hypervisor Recovery Without Reboot,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2018, pp. 115–126.

[10] C. Tan, Y. Xia, H. Chen, and B. Zang, “TinyChecker: Transparent
protection of VMs against hypervisor failures with nested virtualization,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN 2012), June 2012, pp. 1–6.

[11] The Linux Foundation, “Xen Project.” [Online]. Available: https:
//xenproject.org

[12] A. Madhavapeddy and D. J. Scott, “Unikernels: The Rise of the
Virtual Library Operating System,” Commun. ACM, vol. 57, no. 1,
pp. 61–69, Jan. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2541883.2541895

[13] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy,
“Recovering Device Drivers,” ACM Trans. Comput. Syst., vol. 24,
no. 4, pp. 333–360, Nov. 2006. [Online]. Available: http://doi.acm.org/
10.1145/1189256.1189257

[14] “Xl.” [Online]. Available: https://wiki.xenproject.org/wiki/XL
[15] “Mirage OS.” [Online]. Available: https://mirage.io
[16] O. Mutlu, “The RowHammer Problem and Other Issues We

May Face As Memory Becomes Denser,” in Proceedings of the
Conference on Design, Automation & Test in Europe, ser. DATE
’17. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2017, pp. 1116–1121. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3130379.3130643

[17] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting
Codes: On the Effectiveness of ECC Memory Against Rowhammer
Attacks,” in S&P, May 2019, best Practical Paper Award, Pwnie
Award Nomination for Most Innovative Research. [Online]. Available:
http://tiny.cc/trt4nz

[18] “etcd.” [Online]. Available: https://etcd.io
[19] “Exploring performance of etcd, zookeeper and consul consistent

key-value datastores.” [Online]. Available: http://tiny.cc/8hu4nz
[20] D. Ongaro and J. Ousterhout, “In Search of an Understandable

Consensus Algorithm,” in 2014 USENIX Annual Technical Conference
(USENIX ATC 14). Philadelphia, PA: USENIX Association, Jun.
2014, pp. 305–319. [Online]. Available: http://tiny.cc/wku4nz

[21] “MiniOS.” [Online]. Available: https://github.com/mirage/mini-os

[22] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, “Nooks:
An architecture for reliable device drivers,” in Proceedings of the
10th Workshop on ACM SIGOPS European Workshop, ser. EW 10.
New York, NY, USA: ACM, 2002, pp. 102–107. [Online]. Available:
http://doi.acm.org/10.1145/1133373.1133393

[23] V. Narayanan, A. Balasubramanian, C. Jacobsen, S. Spall, S. Bauer,
M. Quigley, A. Hussain, A. Younis, J. Shen, M. Bhattacharyya, and
A. Burtsev, “LXDs: Towards Isolation of Kernel Subsystems,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 269–284. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/narayanan

[24] “Xen Security Modules.” [Online]. Available: http://tiny.cc/zdu4nz
[25] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd Conference on Symposium on Networked Systems Design and
Implementation, ser. NSDI’05. USA: USENIX Association, 2005, p.
273–286.

[26] “ApacheBench.” [Online]. Available: http://tiny.cc/anu4nz
[27] D. Mvondo, B. Teabe, A. Tchana, D. Hagimont, and N. De Palma,

“Closer: A New Design Principle for the Privileged Virtual Machine
OS,” in 2019 IEEE 27th International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2019, pp. 49–60.

[28] D. G. Murray, G. Milos, and S. Hand, “Improving Xen Security Through
Disaggregation,” in Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’08. New York, NY, USA: ACM, 2008, pp. 151–160. [Online].
Available: http://doi.acm.org/10.1145/1346256.1346278

[29] M. Le and T. Yuval, “Resilient Virtualized Systems Using ReHype,”
UCLA Computer Science Department, Tech. Rep. 140019, October
2014.

[30] M. Le, “Resilient Virtualized Systems,” UCLA Computer Science De-
partment, Ph.D. thesis 140007, March 2014.

[31] M. Le and Y. Tamir, “Applying Microreboot to System Software,” in
2012 IEEE Sixth International Conference on Software Security and
Reliability, June 2012, pp. 11–20.

[32] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot — A Technique for Cheap Recovery,” in Proceedings
of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251257

[33] A. Depoutovitch and M. Stumm, “Otherworld: Giving Applications
a Chance to Survive OS Kernel Crashes,” in Proceedings of the
5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: ACM, 2010, pp. 181–194. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755933

[34] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, and J. Li,
“Deconstructing Xen,” in 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February
26 - March 1, 2017, 2017. [Online]. Available: http://tiny.cc/j3t4nz

[35] X. Jin, S. Park, T. Sheng, R. Chen, Z. Shan, and Y. Zhou, “FTXen:
Making hypervisor resilient to hardware faults on relaxed cores,” in 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), Feb 2015, pp. 451–462.

[36] S. Doddamani, P. Sinha, H. Lu, T.-H. K. Cheng, H. H. Bagdi,
and K. Gopalan, “Fast and Live Hypervisor Replacement,” in
Proceedings of the 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE 2019.
New York, NY, USA: ACM, 2019, pp. 45–58. [Online]. Available:
http://doi.acm.org/10.1145/3313808.3313821

[37] X. Zhang, X. Zheng, Z. Wang, Q. Li, J. Fu, Y. Zhang, and Y. Shen,
“Fast and Scalable VMM Live Upgrade in Large Cloud Infrastructure,
booktitle = Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems,” ser. ASPLOS ’19. New York, NY, USA: ACM, 2019, pp. 93–
105. [Online]. Available: http://doi.acm.org/10.1145/3297858.3304034

[38] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I.
Kistijantoro, “Understanding and auto-adjusting performance-sensitive
configurations,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 154–168. [Online].
Available: https://doi.org/10.1145/3173162.3173206

12

http://tiny.cc/5xt4nz
http://www-archive.xenproject.org/files/Marketing/WhyXen.pdf
http://www-archive.xenproject.org/files/Marketing/WhyXen.pdf
http://doi.acm.org/10.1145/2043556.2043575
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7581261&isnumber=7581253
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7581261&isnumber=7581253
http://doi.acm.org/10.1145/1899928.1899932
http://doi.acm.org/10.1145/1952682.1952692
https://xenproject.org
https://xenproject.org
http://doi.acm.org/10.1145/2541883.2541895
http://doi.acm.org/10.1145/2541883.2541895
http://doi.acm.org/10.1145/1189256.1189257
http://doi.acm.org/10.1145/1189256.1189257
https://wiki.xenproject.org/wiki/XL
https://mirage.io
http://dl.acm.org/citation.cfm?id=3130379.3130643
http://tiny.cc/trt4nz
https://etcd.io
http://tiny.cc/8hu4nz
http://tiny.cc/wku4nz
https://github.com/mirage/mini-os
http://doi.acm.org/10.1145/1133373.1133393
https://www.usenix.org/conference/atc19/presentation/narayanan
http://tiny.cc/zdu4nz
http://tiny.cc/anu4nz
http://doi.acm.org/10.1145/1346256.1346278
http://dl.acm.org/citation.cfm?id=1251254.1251257
http://doi.acm.org/10.1145/1755913.1755933
http://tiny.cc/j3t4nz
http://doi.acm.org/10.1145/3313808.3313821
http://doi.acm.org/10.1145/3297858.3304034
https://doi.org/10.1145/3173162.3173206

	Introduction
	Background and Motivation
	Xen virtualization platform
	Motivations

	General overview
	Basic idea
	General fault model

	Implementation
	XenStore_uk FT solution
	net_uk FT solution
	tool_uk FT solution
	Global feedback loop
	Scheduling optimizations

	Evaluation
	XenStore_uks
	Robustness
	Overhead

	net_uk
	Robustness
	Overhead

	tool_uk
	Global failure
	Scheduling optimizations

	Related work
	Conclusion
	References

